Hostname: page-component-7dd5485656-bvgqh Total loading time: 0 Render date: 2025-11-01T01:25:28.402Z Has data issue: false hasContentIssue false

c-M relation of the sub-galactic dark matter halos and the effect of the cusp-to-core transition

Published online by Cambridge University Press:  30 October 2025

Yuka Kaneda*
Affiliation:
Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
Koki Otaki
Affiliation:
Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
Masao Mori
Affiliation:
Center for Computational Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan

Abstract

Almost 30 years have passed since not only the universal density distribution of dark matter (DM) halos in cosmological N-body simulations, but also the scalings between properties of DM halos represented by concentration-mass (c-M) relations are proposed. We derive the c-M relation for sub galactic halos (subhalos) of Milky Way (MW)-sized host halo using the result of the ultra-high resolution cosmological N-body simulation, Phi-4096, with a particle mass of 5.13 × 103 h−1M. This c-M relation is confirmed to be consistent with a c-M relation from near the free streaming scale to the galactic scale proposed in a literature. One of our main findings is that the c-M relation can reproduce observational properties of DM halos from dwarf galaxies to clusters of galaxies. In addition, we provide a testable prediction of the density distributions of MW subhalos for future observations.

Information

Type
Poster Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Burkert, A. 1995, ApJ, 447, L25L28.Google Scholar
de Blok, W. J. G., Walter, F., Brinks, E., et al. 2008, AJ, 136(6), 26482719.CrossRefGoogle Scholar
Dekel, A. & Silk, J. 1986, ApJ, 303, 39.CrossRefGoogle Scholar
Gastaldello, F., Buote, D. A., Humphrey, P. J., et al. 2007, ApJ, 669(1), 158183.CrossRefGoogle Scholar
Ishiyama, T. & Ando, S. 2020, MNRAS, 492, 36623671.CrossRefGoogle Scholar
Ishiyama, T., Prada, F., Klypin, A. A., et al. 2021, MNRAS, 506, 42104231.CrossRefGoogle Scholar
Merten, J., Meneghetti, M., Postman, M., et al. 2015, ApJ, 806(1), 4.CrossRefGoogle Scholar
Moore, B. 1994, Nature, 370, 629631.CrossRefGoogle Scholar
Navarro, J. F., Eke, V. R., & Frenk, C. S. 1996, MNRAS, 283, L72L78.CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493508.CrossRefGoogle Scholar
Oh, S.-H., Hunter, D. A., Brinks, E., et al. 2015, AJ, 149(6), 180.CrossRefGoogle Scholar
Sofue, Y. 2016, PASJ, 68, 2.CrossRefGoogle Scholar
Spano, M., Marcelin, M., Amram, P., et al. 2008, MNRAS, 383, 297316.CrossRefGoogle Scholar
Umetsu, K., Zitrin, A., Gruen, D., et al. 2016, ApJ, 821, 116.CrossRefGoogle Scholar