Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T00:32:40.519Z Has data issue: false hasContentIssue false

Cluster Physics & Evolution

Published online by Cambridge University Press:  27 October 2016

Daisuke Nagai
Affiliation:
Department of Physics, Yale University, New Haven, CT 06520, U.S.A.
Monique Arnaud
Affiliation:
Laboratoire AIM, IRFU/Service d'Astrophysique - CEA/DSM - CNRS - Universitê Paris Diderot, Bat. 709, CEA-Saclay, F-91191 Gif-sur- Yvette Cedex, France
Sarthak Dasadia
Affiliation:
Physics Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA
Michael McDonald
Affiliation:
Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Ikuyuki Mitsuishi
Affiliation:
Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
Andrea Morandi
Affiliation:
Physics Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent advances in X-ray and microwave observations have provided unprecedented insights into the structure and evolution of the hot X-ray emitting plasma from their cores to the virialization region in outskirts of galaxy clusters. Recent Sunyaev-Zel'dovich (SZ) surveys (ACT, Planck, SPT) have provided new cluster catalogs, significantly expanding coverage of the mass-redshift plane, while Chandra and XMM-Newton X-ray follow-up programs have improved our understanding of cluster physics and evolution as well as the surveys themselves. However, the current cluster-based cosmological constraints are still limited by uncertainties in cluster astrophysics. In order to exploit the statistical power of the current and upcoming X-ray and microwave cluster surveys, it is critical to improve our understanding of the structure and evolution of the hot X-ray emitting intracluster medium (ICM). In this session, we discussed recent advances in observations and simulations of galaxy clusters, with highlights on (i) the evolution of ICM profiles and scaling relations, (ii) physical processes operating in the outskirts of galaxy clusters, and (iii) impact of mergers on the ICM structure in groups and clusters.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Avestruz, C., Nagai, D., Lau, E., & Nelson, K., 2015, 808, 176 CrossRefGoogle Scholar
Bleem, L. E., Stalder, B., de Haan, T., et al. 2015, ApJS, 216, 27 Google Scholar
Clerc, et al., 2014, A&A, MNRAS, 444, 2723 CrossRefGoogle Scholar
Eckert, D., Vazza, F., Ettori, S., et al. 2012, A&A, 541, 57 Google Scholar
Eckert, et al., 2013, A&A 551 A22 and A23Google Scholar
Govoni, F., Markevitch, M., Vikhlinin, A., et al. 2004, ApJ, 605, 695 CrossRefGoogle Scholar
Hasselfield, et al., 2013, JCAP, 7, 8 CrossRefGoogle Scholar
Hlavacek-Larrondo, J., McDonald, M., Benson, B. A., et al. 2015, ApJ, 805, 35 Google Scholar
Kawahara, H., Yoshitake, H., Nishimichi, T., Sousbie, T., et al. 2011, ApJL, 727, 38 Google Scholar
E. T., K, Lau, Nagai, D., Avestruz, C. et al. 2015, ApJ, 806, 68 Google Scholar
K, Lau, E. T., Nagai, D., & Nelson, K., 2013, ApJ, 777, 151 Google Scholar
K, Lau, E. T., Kravtsov, A., Nagai, D., et al. 2009, ApJ, 705, 1129 Google Scholar
Marriage, et al., 2011, ApJ, 737, 61 CrossRefGoogle Scholar
Mehrtens, et al. 2012, MNRAS, 423, 1024 Google Scholar
McIntosh, D. H., Guo, Y., Hertzberg, J., et al. 2008, MNRAS, 388, 1537 CrossRefGoogle Scholar
McDonald, M., Benson, B. A., Vikhlinin, A., et al. 2013, ApJ, 774, 23 CrossRefGoogle Scholar
McDonald, M., Benson, B. A., Vikhlinin, A., et al. 2014, ApJ, 794, 67 Google Scholar
McDonald, M., McNamara, B. R., van Weeren, R. J., et al. 2015, ApJ, 811, 111 CrossRefGoogle Scholar
Mitsuishi, I., Kawahara, H., Sekiya, N., et al. 2014, ApJ, 783, 137 Google Scholar
Mitsuda, K., Bautz, M., Inoue, H., et al. 2007, PASJ, 59, 1 Google Scholar
Morandi, A., Sun, M., Forman, W., & Jones, C., 2015, MNRAS, 450, 2261 Google Scholar
Nagai, D., Lau, E., Avestruz, C., et al. 2013, ApJ, 777, 137 Google Scholar
Nelson, K, Rudd, D., Shaw, L., & Nagai, D., 2012, ApJ, 751, 121 Google Scholar
Nelson, K, Lau, E. T., Nagai, D., et al. 2014a, ApJ, 782, 107 Google Scholar
Nelson, K, Lau, E. T. & Nagai, D., 2014b, ApJ, 792, 25 Google Scholar
Ota, N, Nagai, D., Lau, E. T., (arXiv:1507.02730)Google Scholar
Planck Collaboration, Planck Early result VIII, 2011, A&A, 536, A8 Google Scholar
Planck Collaboration, Planck Early result IX, 2011, A&A, 536, A9 Google Scholar
Planck Collaboration, Planck Early result XI, 2011, A&A 536 A11 Google Scholar
Planck Collaboration, Planck Intermediate Result V, 2013, A&A, 550, A131 Google Scholar
Planck Collaboration, Planck 2013 results XXIX 2013, A&A 571 A29 and 2015, 581, A14 Google Scholar
Planck Collaboration, Planck 2013 results XX 2013, A&A, 571, A20 Google Scholar
Planck Collaboration, Planck 2015 results XXVII 2015, A&A, in press, [arXiv1502.01598]Google Scholar
Reiprich, T. H., Basu, K., Ettori, S. et al. 2013, SSRv, 177, 195 Google Scholar
Rudd, D. & Nagai, D., 2009, ApJ, 701. 16 Google Scholar
Roncarelli, M., Ettori, S., Dolag, K., et al. 2006, MNRAS, 373, 1339 Google Scholar
Simionescu, A., Allen, S. W., Mantz, A., et al. 2011, Science, 331, 1576 Google Scholar
Tovmassian, H. M., Tiersch, H., Tovmassian, G. H., et al. 2005, RMxAA, 41, 3 Google Scholar
Yu, L., Nelson, K., & Nagai, D. 2015, ApJ, 807, 12 CrossRefGoogle Scholar
Zhuravleva, I., Churazov, E., Kravtsov, A., et al. 2013, MNRAS, 428, 3274 Google Scholar