Hostname: page-component-7dd5485656-hw7sx Total loading time: 0 Render date: 2025-11-01T01:25:23.801Z Has data issue: false hasContentIssue false

Circumgalactic gas flows in the Local Group

Published online by Cambridge University Press:  30 October 2025

Philipp Richter*
Affiliation:
Institut für Physik und Astronomie, Universität Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, 14476 Golm (Potsdam), Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I discuss circumgalactic gas flows in the extended Milky Way halo in the context of the on-going formation and evolution of the Local Group. UV absorption-line measurements, in combination with H i 21 cm observations, provide detailed information on the chemical composition, dust content, physical conditions, and large-scale kinematics of the so-called high-velocity clouds, which are believed to trace neutral and ionized gas in the gaseous halos of the Milky Way, M31, and in the intragroup medium of the Local Group. Recent results in this field and ideas for future observational studies are being presented.

Information

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

References

Biaus, L., Nuza, S.E., Richter, P., et al. 2022, MNRAS 517, 6170 CrossRefGoogle Scholar
Blitz, L., Spergel, D.N., Teuben, P.J., Hartmann, D., & Burton, W.B. 1999, ApJ, 514, 818 CrossRefGoogle Scholar
Bouma, S.J.D., Richter, P. & Fechner, C., 2019, A&A, 627, A20 CrossRefGoogle Scholar
Casetti-Dinescu, D.I., Moni Bidin, C., Girard, T.M., et al. 2014, ApJL, 784, L37 CrossRefGoogle Scholar
D’Onghia, E. & Fox, A.J. 2016, ARA&A, 54, 363 Google Scholar
Fox, A.J., Wakker, B.P., Smoker, J.V., et al. 2010, ApJ, 718, 1046 CrossRefGoogle Scholar
Fox, A.J., Richter, P., Wakker, B.P. et al. 2013, ApJ, 772, 110 CrossRefGoogle Scholar
Fox, A.J., Barger, K.A., Wakker, B.P., et al. 2018, ApJ, 854, 142 CrossRefGoogle Scholar
Hammer, F., Yang, Y.B., Flores, H., Puech, M., Fouquet, S. 2015, ApJ, 813, 110 CrossRefGoogle Scholar
Lehner, N., Berek, S.C., Howk, J.C., et al. 2020, ApJ, 900, 9 CrossRefGoogle Scholar
Lucchini, S., D’Onghia, E., & Fox, A.J. 2021, ApJL, 921, L36 CrossRefGoogle Scholar
Nidever, D.L., Majewski, S.R., Butler Burton, W., & Nigra, L. 2010, ApJ, 723, 1618 CrossRefGoogle Scholar
Nuza, S.E., Parisi, F., & Scannapieco, C., et al. 2014, MNRAS, 441, 2593 CrossRefGoogle Scholar
Putman, M. E., Peek, J. E. G., & Joung, M. R. 2012, ARA&A, 50, 491 CrossRefGoogle Scholar
Richter, P., Wakker, B.P., Sembach, K.R., et al. 2001a, ApJ, 559, 318 CrossRefGoogle Scholar
Richter, P., Savage, B. D., Wakker, B. P., Sembach, K. R., & Kalberla, P. M. W. 2001b, ApJ, 549, 281 CrossRefGoogle Scholar
Richter, P. 2012, ApJ, 750, 165 CrossRefGoogle Scholar
Richter, P., Fox, A.J., Wakker, B.P., et al. 2013, ApJ, 772, 111 CrossRefGoogle Scholar
Richter, P. 2017, ASSL, 430, 15 CrossRefGoogle Scholar
Richter, P., Nuza, S. E., Fox, A. J., et al. 2017, A&A, 607, A48 CrossRefGoogle Scholar
Wakker, B.P., Howk, J.C., Savage, B.D. 1999, Nature, 402, 388 CrossRefGoogle Scholar
Wakker, B.P. 2001, ApJS, 136, 463 CrossRefGoogle Scholar
Wakker, B.P. 2004, in High Velocity Clouds, ed. van Woerden, H., Wakker, B.P., Schwarz, U.J., & de Boer, K.S. (Dordrecht: Kluwer), 25CrossRefGoogle Scholar
Westmeier, T., Braun, R., Brüns, C., Kerp, J., & Thilker, D.A. 2007, New. Astron. Rev., 51, 108 CrossRefGoogle Scholar
Zhang, L., Moni Bidin, C., Casetti-Dinescu, D.I., et al. 2017, ApJ, 835, 285 CrossRefGoogle Scholar