Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T22:30:08.805Z Has data issue: false hasContentIssue false

Chromospherically Active Stars in the RAVE Survey

Published online by Cambridge University Press:  06 January 2014

M. Žerjal
Affiliation:
Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia email: marusa.zerjal@fmf.uni-lj.si
T. Zwitter
Affiliation:
Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia email: marusa.zerjal@fmf.uni-lj.si Center of Excellence SPACE-SI, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia
G. Matijevič
Affiliation:
Dept. of Astronomy and Astrophysics, Villanova University, 800 E Lancaster Ave, Villanova, PA 19085, USA
K. G. Strassmeier
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a qualitative characterization of activity levels of a large database of ~44,000 candidate RAVE stars (unbiased, magnitude limited medium resolution survey) that show chromospheric emission in the Ca II infrared triplet and this vastly enlarges previously known samples. Our main motivation to study these stars is the anti-correlation of chromospheric activity and stellar ages that could be calibrated using stellar clusters with known ages. Locally linear embedding used for a morphological classification of spectra revealed 53,347 cases with a suggested emission component in the calcium lines. We analyzed a subsample of ~44,000 stars with S/N>20 using a spectral subtraction technique where observed reference spectra of inactive stars were used as templates instead of synthetic ones. Both the equivalent width of the excess emission for each calcium line and their sum is derived for all candidate active stars with no respect to the origin of their emission flux. ~17,800 spectra show a detectable chromospheric flux with at least 2 σ confidence level. The overall distribution of activity levels shows a bimodal shape, with the first peak coinciding with inactive stars and the second with the pre-main-sequence cases.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Katz, D., Munari, U., Cropper, M., et al. 2004, MNRAS, 354, 1223Google Scholar
Mamajek, E. E., & Hillenbrand, L. A. 2008, ApJ, 687, 1264Google Scholar
Matijevič, G., Zwitter, T., Bienaymé, O., et al. 2012, ApJS, 200, 14Google Scholar
Munari, U., Sordo, R., Castelli, F., & Zwitter, T. 2005, A&A, 442, 1127Google Scholar
Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., & Vaughan, A. H. 1984, ApJ, 279, 763Google Scholar
Roweis, S. T. & Saul, L. K. 2000, Science, 190, 2323Google Scholar
Siebert, A., Williams, M. E. K., Siviero, A., et al. 2011, AJ, 141, 187Google Scholar
Soderblom, D. R. 2010, ARA&A, 48, 581Google Scholar
Steinmetz, M., Zwitter, T., Siebert, A., et al. 2006, AJ, 132, 1645CrossRefGoogle Scholar
Strassmeier, K. G., Rice, J. B., Ritter, A., et al. 2005, A&A, 440, 1105Google Scholar
Vanderplas, J. & Connolly, A. 2009, AJ, 138, 1365Google Scholar
Wilkinson, M. I., Vallenari, A., Turon, C., et al. 2005, MNRAS, 359, 1306CrossRefGoogle Scholar
Žerjal, M., Zwitter, T., Matijevič, G., Strassmeier, K. G.et al. 2013, submittedGoogle Scholar
Zucker, D. B., de Silva, G., Freeman, K., Bland-Hawthorn, J. & Hermes Team 2012, Galactic Archaeology: Near-Field Cosmology and the Formation of the Milky Way, 458, 421Google Scholar
Zwitter, T., Siebert, A., Munari, U., et al. 2008, AJ, 136, 421CrossRefGoogle Scholar