Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T23:32:24.688Z Has data issue: false hasContentIssue false

Chemical evolution models for local group dwarf spheroidal galaxies: the evolution of Fe-peak elements

Published online by Cambridge University Press:  09 March 2010

Gustavo A. Lanfranchi
Affiliation:
Núcleo de Astrofísica Teórica, Universidade Cruzeiro do Sul, R. Galvão Bueno 868, Liberdade, 01506-000, São Paulo, SP, Brazil email: gustavo.lanfranchi@cruzeirodosul.edu.br
Francesca Matteucci
Affiliation:
Dipartimento di Astronomia-Universitá di Trieste, Via G. B. Tiepolo 11, 34131 Trieste, Italy
Gabriele Cescutti
Affiliation:
Dipartimento di Astronomia-Universitá di Trieste, Via G. B. Tiepolo 11, 34131 Trieste, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The evolution of Fe-peak elements of several Local Group Dwarf Spheroidal Galaxies are discussed based on the comparison between a chemical evolution model and obsevations. In our scenario, the evolution of these galaxies are mainly controlled by a low star formation efficiency coupled with very intense galactic winds. The low star formation rate gives rise to the observed low metallicities and to [alpha/Fe] and [s/Fe] ratios below solar, whereas the intense galactic winds are responsible for the sharp decrease observed in several abundance ratios. The shape of the stellar metallicity distributions are defined by both parameters and the observed data cannot be reproduced without evoking galactic winds. The same scenario applied to a standard model fits very well several Fe-peak elements, with different nucleosynthesis prescriptions for each set of elements.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Geisler, D., Smith, V. V., Wallerstein, G., Gonzalez G., & Charbonnel, C. 2005, AJ, 129, 1428CrossRefGoogle Scholar
Lanfranchi, G. & Matteucci, F. 2003, MNRAS, 345, 71CrossRefGoogle Scholar
Lanfranchi, G. & Matteucci, F. 2004, MNRAS, 351, 1338CrossRefGoogle Scholar
Lanfranchi, G., Matteucci, F., & Cescutti, , 2008, A&A, 481, 635Google Scholar
Nomoto, K., et al. 1997, Nucl. Phys. A, 616, 79CrossRefGoogle Scholar
Sadakane, K., et al. 2004, PASJ, 56, 1041CrossRefGoogle Scholar
Shetrone, M., Cote, P., & Sargent, W. L. W. 2001, ApJ, 548, 59CrossRefGoogle Scholar
Shetrone, M., Venn, K. A., Tolstoy, E., & Primas, F. 2003, AJ, 125, 684CrossRefGoogle Scholar
van den Hoeck, L. B. & Groenwegen, M. A. T. 1997, A&AS, 123, 305Google Scholar
Woosley, S. E. & Weaver, T. A. 1995, ApJS, 101, 181CrossRefGoogle Scholar