Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T21:53:10.789Z Has data issue: false hasContentIssue false

Chemical enrichment in the early Galaxy

Published online by Cambridge University Press:  01 June 2008

Torgny Karlsson*
Affiliation:
NORDITA, AlbaNova University Center, SE-106 91, Stockholm, Sweden School of Physics, The University of Sydney, 2006 NSW, Australia email: torgny@physics.usyd.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemical enrichment by the first sources of light in the universe ultimately set the stage for the subsequent evolution of the Milky Way system. The oldest and, usually, the most-metal poor stars are our ‘near-field’ link to this ancient epoch as they, apart from tracing the chemical enrichment itself, also indirectly hold information on, e.g., the conditions for star formation and feed-back effects in the early universe. In particular, I will discuss the possible origins of the relatively large number of carbon enhanced metal-poor stars in the Galactic halo. Furthermore, I will argue that the apparent absence of the chemical signature of so-called pair-instability supernovae (PISNe), which are a natural consequence of current theoretical models for primordial star formation at the highest masses, may arise from a subtle observational selection effect. Whereas most surveys traditionally focus on the most metal-poor stars, early PISN enrichment is predicted to ‘overshoot’, reaching enrichment levels of [Ca/H] ~ −2.5 that would be missed by current searches.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93CrossRefGoogle Scholar
Akerman, C. J., Carigi, L., Nissen, P. E., Pettini, M., & Asplund, M. 2004, A&A, 414, 931Google Scholar
Arnone, E., Ryan, S. G., Argast, D., Norris, J. E., & Beers, T. C. 2005, A&A, 430, 507Google Scholar
Ballero, S. K., Matteucci, F., & Chiappini, C. 2006, New Astron., 11, 306CrossRefGoogle Scholar
Barklem, P. S., et al. 2005, A&A, 439, 129Google Scholar
Beers, T. C. & Christlieb, N. 2005, ARAA, 43, 531CrossRefGoogle Scholar
Belokurov, V., et al. 2007, ApJ, 654, 897CrossRefGoogle Scholar
Bovill, M. S. & Ricotti, M. 2008, ApJ, submitted (astro-ph/0806.2340)Google Scholar
Bromm, V., Coppi, P. S., & Larson, R. B. 1999, ApJ (Letters), 527, L5).CrossRefGoogle Scholar
Bromm, V., Coppi, P. S., & Larson, R. B. 2002, ApJ, 564, 23CrossRefGoogle Scholar
Cayrel, R., et al. 2004, A&A, 416, 1117Google Scholar
Cescutti, G. 2008, A&A, 481, 691Google Scholar
Chiappini, C., Hirschi, R., Meynet, G., Ekström, S., Maeder, A., & Matteucci, F. 2006, A&A (Letters), 449, L27).Google Scholar
Chieffi, A. & Limongi, M. 2004, ApJ, 608, 405CrossRefGoogle Scholar
Christlieb, N., et al. 2002, Nature, 419, 904CrossRefGoogle Scholar
Cohen, J. G., et al. 2005, ApJ (Letters), 633, L109).CrossRefGoogle Scholar
François, P., et al. 2007, A&A, 476, 935Google Scholar
Frebel, A., Johnson, J. L., & Bromm, V. 2007, MNRAS (Letters), 380, L40).CrossRefGoogle Scholar
Frebel, A., et al. 2005, Nature, 434, 871CrossRefGoogle Scholar
Greif, T. H. & Bromm, V. 2006, MNRAS, 373, 128CrossRefGoogle Scholar
Greif, T. H., Johnson, J. L., Klessen, R. S., & Bromm, V. 2008, MNRAS, submitted (astro-ph/0803.2237)Google Scholar
Helmi, A., et al. 2006, ApJ (Letters), 651, L121).CrossRefGoogle Scholar
Hirschi, R. 2007, A&A, 461, 571Google Scholar
Karlsson, T. 2005, A&A, 439, 93Google Scholar
Karlsson, T. 2006, ApJ (Letters), 641, L41).CrossRefGoogle Scholar
Karlsson, T. & Gustafsson, B. 2005, A&A, 436, 879Google Scholar
Karlsson, T., Johnson, J. L., & Bromm, V. 2008, ApJ, 679, 6CrossRefGoogle Scholar
Kirby, E. N., Simon, J. D., Geha, M., Guhathakurta, P., & Frebel, A. 2008, ApJ (Letters), submitted (astro-ph/0807.1925)Google Scholar
Larson, R. B. & Starrfield, S. 1971, A&A, 13, 190Google Scholar
Lucatello, S., Beers, T. C., Christlieb, N., Barklem, P. S., Rossi, S., Marsteller, B., Sivarani, T., & Lee, Y. S. 2006, ApJ (Letters), 652, L37).CrossRefGoogle Scholar
Lucatello, S., Tsangarides, S., Beers, T. C., Carretta, E., Gratton, R. G., & Ryan, S. G. 2005, ApJ, 625, 825CrossRefGoogle Scholar
Meynet, G., Ekström, S., & Maeder, A. 2006, A&A, 447, 623Google Scholar
Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C., & Maeda, K. 2006, Nucl. Phys. A, 777, 424CrossRefGoogle Scholar
Norris, J. E., et al. , N. 2007, ApJ, 670, 774CrossRefGoogle Scholar
Salvadori, S., Ferrara, A., & Schneider, R. 2008, MNRAS, 386, 348CrossRefGoogle Scholar
Smith, N., et al. 2007, ApJ, 666, 1116CrossRefGoogle Scholar
Spite, M., et al. 2005, A&A, 430, 655Google Scholar
Suda, T., Aikawa, M., Machida, M. N., Fujimoto, M. Y., & Iben, I. Jr., 2004, ApJ, 611, 476CrossRefGoogle Scholar
Tumlinson, J. 2007, ApJ, 665, 1361CrossRefGoogle Scholar
Tumlinson, J., Venkatesan, A., & Shull, J. M. 2004, ApJ, 612, 602CrossRefGoogle Scholar
Umeda, H. & Nomoto, K. 2003, Nature, 422, 871CrossRefGoogle Scholar
Venn, K. A., Irwin, M., Shetrone, M. D., Tout, C. A., Hill, V., & Tolstoy, E. 2004, AJ, 128, 1177CrossRefGoogle Scholar
Venn, K. A. & Lambert, D. L. 2008, ApJ, 677, 572CrossRefGoogle Scholar
Willman, B., et al. 2005, AJ, 129, 2692CrossRefGoogle Scholar
Yoshida, N., Omukai, K., Hernquist, L., & Abel, T. 2006, ApJ, 652, 6CrossRefGoogle Scholar