Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T21:45:42.099Z Has data issue: false hasContentIssue false

The Cepheid Extragalactic Distance Scale: Past, Present and Future

Published online by Cambridge University Press:  06 February 2024

Wendy L. Freedman*
Affiliation:
Dept. of Astronomy & Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA Kavli Institute for Cosmological Physics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA
Barry F. Madore
Affiliation:
Dept. of Astronomy & Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA Carnegie Observatories, 813 Santa Barbara St., Pasadena CA 91101, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cepheids have been the cornerstone of the extragalactic distance scale for a century. With high-quality data, these luminous supergiants exhibit a small dispersion in their Leavitt (period–luminosity) relation, particularly at longer wavelengths, and few methods rival the precision possible with Cepheid distances. In these proceedings, we present an overview of major observational programs pertaining to the Cepheid extragalactic distance scale, its progress and remaining challenges. In addition, we present preliminary new results on Cepheids from the James Webb Space Telescope (JWST). The launch of JWST has opened a new chapter in the measurement of extragalactic distances and the Hubble constant. JWST offers a resolution three times that of the Hubble Space Telescope (HST) with nearly 10 times the sensitivity. It has been suggested that the discrepancy in the value of the Hubble constant based on Cepheids compared to that inferred from measurements of the cosmic microwave background requires new and additional physics beyond the standard cosmological model. JWST observations will be critical in reducing remaining systematics in the Cepheid measurements and for confirming if new physics is indeed required. Early JWST data for the galaxy, NGC 7250 show a decrease in scatter in the Cepheid Leavitt law by a factor of two relative to existing HST data and demonstrate that crowding/blending effects are a significant issue in a galaxy as close as 20 Mpc.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Baade, W. 1956, PASP, 68, 5; doi: 10.1086/126870 Google Scholar
Baade, W. & Swope, H. H. 1963, AJ, 68, 435; doi: 10.1086/108996 Google Scholar
Baade, W. & Swope, H. H. 1965, AJ, 70, 212; doi: 10.1086/109717 Google Scholar
Bailey, S. I. 1902, Annals of Harvard College Observatory, 38, 1Google Scholar
da Silva, R., Crestani, J., Bono, G., et al. 2022, A&A, 661, A104; doi: 10.1051/0004-6361/202142957 Google Scholar
Breuval, L., Kervella, P., Wielgórski, P., et al. 2021, ApJ, 913, 38; doi: 10.3847/1538-4357/abf0ae Google Scholar
Breuval, L., Riess, A. G., Kervella, P., et al. 2022, ApJ, 939, 89; doi: 10.3847/1538-4357/ac97e2 Google Scholar
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245; doi: 10.1086/167900 Google Scholar
de Vaucouleurs, G. 1993, ApJ, 415, 10; doi: 10.1086/173138 Google Scholar
Freedman, W. L. 1984, Bull. Am. Astron. Soc., 16, 888 Google Scholar
Freedman, W. L. 1988, ApJ, 326, 691; doi: 10.1086/166128 Google Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47; doi: 10.1086/320638 Google Scholar
Freedman, W. L., Madore, B. F., Scowcroft, V., et al. 2012, ApJ, 758, 24; doi: 10.1088/0004-637X/758/1/24 Google Scholar
Freedman, W. L., Madore, B. F., Hatt, D., et al. 2019, ApJ, 882, 34; doi: 10.3847/1538-4357/ab2f73 Google Scholar
Freedman, W. L. 2021, ApJ, 919, 16; doi: 10.3847/1538-4357/ac0e95 Google Scholar
Freedman, W. L. & Madore, B. F. 1990, ApJ, 365, 186; doi: 10.1086/169469 Google Scholar
Freedman, W. L. & Madore, B. F. 2010, ARA&A, 48, 673; doi: 10.1146/annurev-astro-082708-101829 Google Scholar
Hodge, P. W. 1981, ARA&A, 19, 357; doi: 10.1146/annurev.aa.19.090181.002041 Google Scholar
Sawyer Hogg, H. 1955, Publ. David Dunlap Obs., 2, 33Google Scholar
Hoyt, T. J. 2023, Nat. Astron., 7, 590; doi: 10.1038/s41550-023-01913-1 Google Scholar
Hubble, E. P. 1925a, The Observatory, 48, 139Google Scholar
Hubble, E. P. 1925b, ApJ, 62, 409; doi: 10.1086/142943 Google Scholar
Hubble, E. P. 1926, ApJ, 63, 236; doi: 10.1086/142976 Google Scholar
Hubble, E. 1929, PNAS, 15, 168; doi: 10.1073/pnas.15.3.168 Google Scholar
Joy, A. H. 1949, ApJ, 110, 105; doi: 10.1086/145190 Google Scholar
Leavitt, H. S. 1908, Annals of Harvard College Observatory, 60, 87Google Scholar
Leavitt, H. S. & Pickering, E. C. 1912, Harvard College Obs. Circ., 173Google Scholar
Lee, M. G., Freedman, W. L., & Madore, B. F. 1993, ApJ, 417, 553; doi: 10.1086/173334 Google Scholar
Macri, L. M., Calzetti, D., Freedman, W. L., et al. 2001, ApJ, 549, 721; doi: 10.1086/319465 Google Scholar
McGonegal, R., McAlary, C. W., Madore, B. F., et al. 1982, ApJL, 257, L33; doi: 10.1086/183803 Google Scholar
McGonegal, R., McAlary, C. W., McLaren, R. A., et al. 1983, ApJ, 269, 641; doi: 10.1086/161071 Google Scholar
Monson, A. J., Freedman, W. L., Madore, B. F., et al. 2012, ApJ, 759, 146; doi: 10.1088/0004-637X/759/2/146 Google Scholar
Mould, J. & Sakai, S. 2009, ApJ, 697, 996; doi: 10.1088/0004-637X/697/2/996 Google Scholar
Owens, K., et al. 2023, ApJ, submittedGoogle Scholar
Persson, S. E., Madore, B. F., Krzemiński, W., et al. 2004, AJ, 128, 2239; doi: 10.1086/424934 Google Scholar
Pietrzyński, G., Graczyk, D., Gallenne, A., et al. 2019, Nature, 567, 200; doi: 10.1038/s41586-019-0999-4 Google Scholar
Collaboration, Planck, Aghanim, N., Akrami, Y., et al. 2020, A&A, 641, A6; doi: 10.1051/0004-6361/201833910 Google Scholar
Rieke, M. J., Kelly, D. M., Misselt, K., et al. 2023, PASP, 135, 028001; doi: 10.1088/1538-3873/acac53 Google Scholar
Riess, A. G., Macri, L., Casertano, S., et al. 2009, ApJ, 699, 539; doi: 10.1088/0004-637X/699/1/539 Google Scholar
Riess, A. G., Macri, L., Casertano, S., et al. 2012, ApJ, 752, 76; doi: 10.1088/0004-637X/752/1/76 Google Scholar
Riess, A. G., Macri, L. M., Hoffmann, S. L., et al. 2016, ApJ, 826, 56; doi: 10.3847/0004-637X/826/1/56 Google Scholar
Riess, A. G., Casertano, S., Yuan, W., et al. 2021, ApJL, 908, L6; doi: 10.3847/2041-8213/abdbaf Google Scholar
Riess, A. G., Yuan, W., Macri, L. M., et al. 2022, ApJL, 934, L7; doi: 10.3847/2041-8213/ac5c5b Google Scholar
Ripepi, V., Catanzaro, G., Molinaro, R., et al. 2020, A&A, 642, A230; doi: 10.1051/0004-6361/202038714 Google Scholar
Ripepi, V., Catanzaro, G., Molinaro, R., et al. 2021, MNRAS, 508, 4047; doi: 10.1093/mnras/stab2460 Google Scholar
Ripepi, V., Catanzaro, G., Clementini, G., et al. 2022, A&A, 659, A167; doi: 10.1051/0004-6361/202142649 Google Scholar
Sandage, A. & Tammann, G. A. 2006, ARA&A, 44, 93; doi: 10.1146/annurev.astro.43.072103.150612 Google Scholar
Scowcroft, V., Freedman, W. L., Madore, B. F., et al. 2011, ApJ 743, 76; doi: 10.1088/0004-637X/743/1/76 Google Scholar
Udalski, A., Wyrzykowski, L., Pietrzynski, G., et al. 2001, AcA, 51, 221 Google Scholar
Wisniewski, W. Z. & Johnson, H. L. 1968, Commun. Lunar and Planetary Lab., 7, 57Google Scholar