Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T20:03:12.183Z Has data issue: false hasContentIssue false

Center-to-limb variation of spectral lines and their effect on full-disk observations

Published online by Cambridge University Press:  23 December 2024

Alexander G. M. Pietrow*
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany
Adur Pastor Yabar
Affiliation:
Institute for Solar Physics, Dept. of Astronomy, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An accurate description of the center-to-limb variation (CLV) of stellar spectra is becoming an increasingly critical factor in both stellar and exoplanet characterization. In particular, the CLV of spectral lines is extremely challenging as its characterization requires highly detailed knowledge of the stellar physical conditions. To this end, we present the Numerical Empirical Sun-as-a-Star Integrator (NESSI) as a tool for translating high-resolution solar observations of a partial field of view into disk-integrated spectra that can be used to test common assumptions in stellar physics.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Balthasar, H., Lustig, G., Woehl, H., & Stark, D. 1986, A&A, 160, 277279 Google Scholar
Bergemann, M., Hoppe, R., et al. 2021, MNRAS, 508, 22362253 CrossRefGoogle Scholar
Boisse, I., Bonfils, X., & Santos, N. C. 2012, A&A, 545, A109 Google Scholar
Canocchi, G., Lind, K., et al., Submitted to A&AGoogle Scholar
Chakraborty, H. et al., submitted to A&AGoogle Scholar
Cretignier, M., Pietrow, A.G.M., Zhao, Y, & Aigrain, S., 2023, arXiv e-prints, 2310.15926Google Scholar
De Pontieu, B. et al. 2014, Sol. Phys., 289, 27332779 CrossRefGoogle Scholar
de la Cruz Rodrguez, J., Leenaarts, J., Danilovic, S., & Uitenbroek, H. 2019, A&A, 623, A74.Google Scholar
Dineva, E. et al. 2020, Solar and Stellar Magnetic Fields: Origins and Manifestations, 354, 473 Google Scholar
Dumusque, X., Boisse, I., & Santos, N.C. 2014, ApJ, 796, 132 CrossRefGoogle Scholar
Dumusque, X. et al. 2015, ApJL, 814, L21 CrossRefGoogle Scholar
Ellwarth, M., Schäfer, S., Reiners, A., & Zechmeister, M. 2023, A&A, 673, A19 Google Scholar
Husser, T. et al. 2013, A&A, 553, A6 Google Scholar
Kurucz, R. L. 1970, SAO Special Report, 309Google Scholar
Leenaarts, J., Carlsson, M., and Rouppe van der Voort, L. 2012, ApJ, 749, 136 CrossRefGoogle Scholar
Mandel, K., & Agol, E. 2002, ApJ, 580, L171 CrossRefGoogle Scholar
Maxted, P. F. L. 2023, MNRAS, 519, 3723 CrossRefGoogle Scholar
Meunier, N. and Desort, M. and Lagrange, A.-M. 2010, A&A, 512, A39 Google Scholar
Neckel, H., & Labs, D. 1994, Sol. Phys., 153, 91 CrossRefGoogle Scholar
Oranje, B. J. 1983, A&A, 124, 43 Google Scholar
Otsu, T., Asai, A., Ichimoto, K., Ishii, T. T., and Namekata, K. 2022, ApJ, 939, 98 CrossRefGoogle Scholar
Pietrow, A. G. M. et al. 2023, A&A, 671, A130 Google Scholar
Pietrow, A. G. M., Hoppe, R., Bergemann, M., & Calvo, F. 2023, A&A, 672, L6 Google Scholar
Pietrow, A. G. M., Cretignier, M., et al. 2023, arXiv e-prints, 2309.03373Google Scholar
Reiners, A., Mrotzek, N., Lemke, U., Hinrichs, J., & Reinsch, K. 2016, A&A, 587, A65 Google Scholar
Reiners, A. et al. 2023, A&A, 673, A71 Google Scholar
Scharmer, Goran B. et al. 2003, Proc. SPIE, 4853, 341 CrossRefGoogle Scholar
Strassmeier, K. G., Ilyin, I., & Steffen, M. 2018, A&A, 612, A44 Google Scholar
Zhao, Y. & Dumusque, X. 2023, A&A, 671, A11 Google Scholar