Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T00:04:18.620Z Has data issue: false hasContentIssue false

Carbonaceous Material in Extra-terrestrial Matter

Published online by Cambridge University Press:  27 October 2016

Zita Martins*
Affiliation:
Dept of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK email: z.martins@imperial.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Comets, asteroids, meteorites, micrometeorites, interplanetary dust particles (IDPs), and ultra-carbonaceous Antarctic micrometeorites (UCAMMs) may contain carbonaceous material, which was exogenously delivered to the early Earth. Carbonaceous chondrites have an enormous variety of extra-terrestrial compounds, including all the key compounds important in terrestrial biochemistry. Comets contain several carbon-rich species and, in addition, the hypervelocity impact-shock of a comet can produce several α-amino acids. The analysis of the carbonaceous content of extra-terrestrial matter provides a window into the resources delivered to the early Earth, which may have been used by the first living organisms.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Alexander, C. M. O.'D., Howard, K. T., Bowden, R., & Fogel, M. L. 2013, GCA 123 244-260 . Anders, E. 1989, Nature, 342, 255257.Google Scholar
Bockelée-Morvan, D., Lis, D. C., Wink, J. E., Despois, D., Crovisier, J., Bachiller, R., Benford, D. J., Biver, N., Colom, P., Davies, J. K., Gérard, E., Germain, B., Houde, M., Mehringer, D., Moreno, R., Paubert, G., Phillips, T. G., & Rauer, H. 2000, A&A 353 11011114.Google Scholar
Brinton, K. L. F., Engrand, C., Glavin, D. P., Bada, J. L., & Maurette, M. 1998. OLEB 28 413424.Google Scholar
Burton, A. S., Glavin, D. P., Callahan, M. P., Dworkin, J. P., Jenniskens, P., & Shaddad, M. H. 2011, Meteoritics & Planetary Science 46 17031712.Google Scholar
Chan, H.-S., Martins, Z., & Sephton, M. A. 2012. Meteoritics and Planetary Science 47 15021516.Google Scholar
Chyba, C. F. & Sagan, C. 1992, Nature 355 125132.Google Scholar
Chyba, C. F., Thomas, P. J., Brookshaw, L., & Sagan, C. 1990, Science 249 366373.Google Scholar
Clemett, S. J., Maechling, C. R., Zare, R. N., Swan, P. D., & Walker, R. M. 1993. Science 262 721725.Google Scholar
Cody, G. D. & Alexander, C. M. O.'D. 2005, Geochimica et Cosmochimica Acta 69 10851097.CrossRefGoogle Scholar
Cronin, J. R. & Chang, S. 1993, In The Chemistry of Life's Origin, edited by Greenberg, J. M., Mendoza-Gomez, C. X. and Pirronello, V. Dordrecht: Kluwer. pp. 209258.CrossRefGoogle Scholar
Crovisier, J. & Bockelee-Morvan, D. 1999, Space Science Reviews 90 1932.Google Scholar
Dartois, E., Engrand, C., Brunetto, R., Duprat, J., Pino, T., Quirico, E., Remusat, L., Bardin, N., Briani, G., Mostefaoui, S., Morinaud, G., Crane, B., Szwec, N., Delauche, L., Jamme, F., Sandt, Ch., & Dumas, P. 2013, Icarus 224 243252.CrossRefGoogle Scholar
DiSanti, M. A., Bonev, B. P., Villanueva, G. L., & Mumma, M. J. 2013, The Astrophysical Journal, 763, 1.Google Scholar
Duprat, J., Dobrica, E., Engrand, C., Aléon, J., Marrocchi, Y., Mostefaoui, S., Meibom, A., Leroux, H., Rouzaud, J.-N., Gounelle, M., & Robert, F. 2010, Science 328 742745.Google Scholar
Ehrenfreund, P., Irvine, W., Becker, L., Blank, J., Brucato, J. R., Colangeli, L., Derenne, S., Despois, D., Dutrey, A., Fraaije, H., Lazcano, A., Owen, T., & Robert, F., International Space Science Institute ISSI-Team 2002, Reports on Progress in Physics, 65, 14271487.Google Scholar
Ehrenfreund, P. & Charnley, S. B. 2000, Annual Review of Astronomy and Astrophysics 38 427483.Google Scholar
Elsila, J. E., Glavin, D. P., & Dworkin, J. P. 2009, Meteoritics and Planetary Science, 44, 1323.Google Scholar
Festou, M., Uwe-Keller, H. & Weaver, H. A. 2005, Comets-I., I., University of Arizona Press. Flynn, G. J., Keller, L. P., Feser, M., Wirick, S., & Jacobsen, C. 2003, GCA, 67, 47914806.Google Scholar
Glavin, D. P., Dworkin, J. P., Aubrey, A., Botta, O., Doty, J. H., Martins, Z., & Bada, J. L. 2006, Meteoritics & Planetary Science 41 889902.Google Scholar
Goesmann, F. et al. 2015, Science 349 aab0689-1-aab0689-3.Google Scholar
Goldman, N., Reed, E. J., Fried, L. E., William Kuo, I.-F., & Maiti, A. 2010, Nature Chemistry 2 949954.Google Scholar
Matrajt, G., Pizzarello, S., Taylor, S., & Brownlee, D. 2004, Meteoritics & Planetary Science 39 18491858.Google Scholar
Matrajt, G., Muñoz Caro, G. M., Dartois, E., D'Hendecourt, L., Deboffle, D., & Borg, J. 2005, A&A 433 979995.Google Scholar
Matrajt, G., Flynn, G., Brownlee, D., Joswiak, D., & Bajt, S. 2013, ApJ 765 145, 18 pp. Martins, Z. M. & Sephton, A. 2009, In Hughes, A.B. (Ed.), Amino acids, peptides and proteins in organic chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 3–42.Google Scholar
Martins, Z., Price, M. C., Goldman, N., Sephton, M. A., & Burchell, M. J. 2013, Nature Geoscience 6 10451049.Google Scholar
Martins, Z., Modica, P., Zanda, B., & Le Sergeant D'Hendecourt, L. 2015, Meteoritics & Planetary Science 50 926943.Google Scholar
Mumma, M. J., DiSanti, M. A., Dello Russo, N., Magee-Sauer, K., Gibb, E., & Novak, R. 2003, AdSR 31 25632575.Google Scholar
Schidlowski, M. 1988, Nature 333 313318.Google Scholar
Schopf, J. W. 1993, Science 260 640646.Google Scholar
Schramm, L. S., Brownlee, D. E., & Wheelock, M. M. 1989. Meteoritics 24 99112.CrossRefGoogle Scholar
Wopenka, B. 1988, EPSL 88 221231.Google Scholar
Wright, I. P., Sheridan, S., Barber, S. J., Morgan, G. H., Andrews, D. J., & Morse, A. D. 2015, Science 349 aab0673-1-aab0673-3.Google Scholar