Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T05:14:09.895Z Has data issue: false hasContentIssue false

Carbonaceous chondrite meteorites as a record of protoplanetary disk conditions

Published online by Cambridge University Press:  12 October 2020

Sara S. Russell
Affiliation:
Planetary Materials Group, Department of Earth Sciences, Natural History Museum Cromwell Road, London, SW7 5BD, UK email: sara.russell@nhm.ac.uk
Enrica Bonato
Affiliation:
Planetary Materials Group, Department of Earth Sciences, Natural History Museum Cromwell Road, London, SW7 5BD, UK email: sara.russell@nhm.ac.uk
Helena Bates
Affiliation:
Planetary Materials Group, Department of Earth Sciences, Natural History Museum Cromwell Road, London, SW7 5BD, UK email: sara.russell@nhm.ac.uk
Ashley J. King
Affiliation:
Planetary Materials Group, Department of Earth Sciences, Natural History Museum Cromwell Road, London, SW7 5BD, UK email: sara.russell@nhm.ac.uk
Natasha V. Almeida
Affiliation:
Planetary Materials Group, Department of Earth Sciences, Natural History Museum Cromwell Road, London, SW7 5BD, UK email: sara.russell@nhm.ac.uk
Paul F. Schofield
Affiliation:
Planetary Materials Group, Department of Earth Sciences, Natural History Museum Cromwell Road, London, SW7 5BD, UK email: sara.russell@nhm.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Chondritic meteorites, and especially the most volatile-rich chondrites, the carbonaceous chondrites, preserve a record of the solar protoplanetary disk dust component and how it has been changed both in the disk environment itself and in its asteroidal parent body. Here we review some of the key features of carbonaceous chondrites and report some new data on their organics component. These show that the nebula reached temperature of >10000C, but only very locally, to produce chondrules. Most meteoritic material underwent thermal and/or aqueous processing, but some retain delicate nebular components such as complex organic molecules and amorphous silicates.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bonato, E., King, A. J., Schofield, P. F., Kaulich, B., Araki, T., Kazemian, M., Lee, M. R., & Russell, S. S. 2019, in: LPI Contribution, 2132, 50 Lunar and Planetary Science Conference, 3047Google Scholar
Bonato, E., King, A. J., Schofield, P. F., Kaulich, B., Araki, T., Abyaneh, M.K, Lee, A. J., & Russell, S. S. 2018, in: LPI Contribution, 2083, 49 Lunar and Planetary Science Conference, 1917Google Scholar
Budde, G., Kleine, T., Kruijer, T., and Burkhardt, C., & Metzler, K. 1995, PNAS, 113, 2886 CrossRefGoogle Scholar
Connolly, H. C. Jr & Jones, H. C. 2017, JGR, Planets, 121, 1885 Google Scholar
Huss, G. R., Rubin, A. E., & Grossman, J. 2006, in: D., Lauretta & H. Y., McSween (eds.), Meteorites and the Early Solar System II Google Scholar
Jones, R. H., Villaneuve, J., & Libourel, G. 2018, in: S. S. Russell, H. C. Jr. Connolly & A. N. Krot (eds.), Chondrules:Records of Protoplanetary Disk Processes Google Scholar
Lodders, K. 2003, ApJ, 591, 1220 CrossRefGoogle Scholar
Palme, H., Hezel, D., & Ebel, D. 2015, ARA&A, 41, 241 Google Scholar
Russell, S. S. 2018, Elements, 14, 2 CrossRefGoogle Scholar
Scott, E. R. D. & Krot, A. N. 2004, ApJ, 623, 571 CrossRefGoogle Scholar
Weisberg, M., McCoy, T., & Krot, A. N. 2006, in: D., Lauretta & H. Y., McSween (eds.), Meteorites and the Early Solar System IIGoogle Scholar
Zinner, E. K. 2003, In: A. M. Davis (ed.) Presolar Grains. Treatise on Geochemistry, Volume 1Google Scholar