Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:32:22.408Z Has data issue: false hasContentIssue false

Can short time delays influence the variability of the solar cycle?

Published online by Cambridge University Press:  12 August 2011

Laurène Jouve
Affiliation:
DAMTP, Centre for Mathematical Sciences, Wilberforce Road, CB3 0WA CAMBRIDGE, UK
Michael R. E. Proctor
Affiliation:
DAMTP, Centre for Mathematical Sciences, Wilberforce Road, CB3 0WA CAMBRIDGE, UK
Geoffroy Lesur
Affiliation:
DAMTP, Centre for Mathematical Sciences, Wilberforce Road, CB3 0WA CAMBRIDGE, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the effects of introducing results of 3D MHD simulations of buoyant magnetic fields in the solar convection zone in 2D mean-field Babcock-Leighton models. In particular, we take into account the time delay introduced by the rise time of the toroidal structures from the base of the convection zone to the solar surface. We find that the delays produce large temporal modulation of the cycle amplitude even when strong and thus rapidly rising flux tubes are considered. The study of a reduced model reveals that aperiodic modulations of the solar cycle appear after a sequence of period doubling bifurcations typical of non-linear systems. We also discuss the memory of such systems and the conclusions which may be drawn concerning the actual solar cycle variability.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bushby, P. J., 2006, Mon. Not. R. Astron. Soc., 371, 772780Google Scholar
Charbonneau, P. & Dikpati, M. 2000, Astrophysical Journal, 543, 1027CrossRefGoogle Scholar
Charbonneau, P., St-Jean, C. & Zacharias, P., 2005, Astrophysical Journal, 619, 613Google Scholar
Hoyng, P. 1988, Astrophysical Journal, 332, 857CrossRefGoogle Scholar
Jouve, L. & Brun, A. S. 2009, Astrophysical Journal, 701, 1300Google Scholar
Jouve, L., Proctor, M. R. E. & Lesur, G. 2010, Astronomy & Astrophysics, 519, A68Google Scholar
Mann, P. D. & Proctor, M. R. E. 2009, Mon. Not. R. Astron. Soc., 399, 99CrossRefGoogle Scholar
Mason, J., Hughes, D. & Tobias, S. 2002, Astrophysical Journal, 580, L89CrossRefGoogle Scholar
Moss, D. & Brooke, J., 2000, Mon. Not. R. Astron. Soc., 315, 521533CrossRefGoogle Scholar
Ossendrijver, A. J. H. & Hoyng, P. 1996, Astronomy & Astrophysics, 313, 959Google Scholar
Proctor, M. R. E. 1977, Journal of Fluid Mechanics, 80, 769CrossRefGoogle Scholar
Rempel, M., 2006, Astrophysical Journal, 647, 662CrossRefGoogle Scholar
Tobias, S. M. 1997, Astronomy & Astrophysics, 322, 1007Google Scholar
Weiss, N. O. & Tobias, S. M. 2000, Space Science Reviews, 94, 99CrossRefGoogle Scholar
Wilmot-Smith, A. L., Nandy, D., Hornig, G. & Martens, P. C. H. 2006, Astrophysical Journal, 652, 696CrossRefGoogle Scholar
Yeates, A. R., Nandy, D. & Mackay, D. H. 2008, Astrophysical Journal, 673, 544CrossRefGoogle Scholar
Yoshimura, H. 1978, Astrophysical Journal, 226, 706Google Scholar