Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T22:51:08.676Z Has data issue: false hasContentIssue false

Astrometric detection and characterization of brown dwarfs

Published online by Cambridge University Press:  01 October 2007

R.-D. Scholz
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D–14482 Potsdam, Germany email: rdscholz@aip.de
M. J. McCaughrean
Affiliation:
University of Exeter, School of Physics, Stocker Road, Exeter EX4 4QL, UK email: mjm@astro.ex.ac.uk
S. Röser
Affiliation:
Astronomisches Rechen-Institut, Mönchhofstraße 12-14, D–69120 Heidelberg, Germany email: roeser@ari.uni-heidelberg.de, elena@ari.uni-heidelberg.de
E. Schilbach
Affiliation:
Astronomisches Rechen-Institut, Mönchhofstraße 12-14, D–69120 Heidelberg, Germany email: roeser@ari.uni-heidelberg.de, elena@ari.uni-heidelberg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As a result of failed star formation, brown dwarfs (BDs) do not reach the critical mass to ignite the fusion of hydrogen in their cores. Different from their low-mass stellar brothers, the red dwarfs, BDs cool down with their lifetime to very faint magnitudes. Therefore, it was only about 10 to 20 years ago that such ultracool objects began to be detected. Accurate astrometry can be used to detect them indirectly as companions to stars by the signature of the so-called astrometric wobble. Resolved faint BD companions of nearby stars can be identified by their common proper motion (CPM). A direct astrometric detection of the hidden isolated BDs in the Solar neighborhood is possible with deep high proper motion (HPM) surveys. This technique led to the discovery of the first free-floating BD, Kelu 1, and of the nearest BD, ε Indi B. Both were meanwhile found to be binary BDs. The astrometric orbital monitoring of ε Indi Ba+Bb, for which we know an accurate distance from the Hipparcos measurement of its primary, ε Indi A, will allow the determination of individual masses of two low-mass BDs. Hundreds of BDs have been identified for the last decade. Deep optical sky survey (SDSS) and near-infrared sky surveys (DENIS, 2MASS), played a major role in the search mainly based on colours, since BDs emit most of their light at longer wavelengths. However, alternative deep optical HPM surveys based on archival photographic data are not only sensitive enough to detect some of the nearest representatives, they do also uncover many of the rare class of ultracool halo objects crossing the Solar neighborhood at large velocities. SSSPM 1444, with the extremely large proper motion of 3.5 arcsec/yr, is one of the nearest among these subdwarfs with masses at the substellar boundary. We present preliminary parallax results for this and two other ultracool subdwarfs (USDs) from the Calar Alto Omega 2000 parallax program.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Becklin, E. E. & Zuckerman, B. 1988, Nature 336, 656CrossRefGoogle Scholar
Biller, B. A., Kasper, M., Close, L. M., Brandner, W., & Kellner, S. 2006, ApJ 641, L141CrossRefGoogle Scholar
Burgasser, A. J., et al. 2002, ApJ 564, 421CrossRefGoogle Scholar
Burgasser, A. J., et al. 2003, ApJ 592, 1186CrossRefGoogle Scholar
Burgasser, A. J., Cruz, K. L., & Kirkpatrick, J. D. 2007a, ApJ 657, 494CrossRefGoogle Scholar
Burgasser, A. J., et al. 2007b, ApJ accepted, arXiv:0709.1373Google Scholar
Burrows, A., Hubbard, W. B., Lunine, J. I., & Liebert, J. 2001, Reviews of Modern Physics 73, 719CrossRefGoogle Scholar
Cruz, K. L., Reid, I. N., Liebert, J., Kirkpatrick, J. D., & Lowrance, P. J. 2003, AJ 126, 2421CrossRefGoogle Scholar
Dahn, C. C., et al. 2002, AJ 124, 1170CrossRefGoogle Scholar
Delfosse, X., et al. 1997, A&A 327, L25Google Scholar
Ducourant, C., Teixeira, R., Hambly, N. C., Oppenheimer, B. R., Hawkins, M. R. S., Rapaport, M., Modolo, J., & Lecampion, J. F. 2007, A&A 470, 387Google Scholar
ESA 1997, The HIPPARCOS and TYCHO catalogues, ESA SP 1200Google Scholar
Gelino, C. R., Kirkpatrick, J. D., & Burgasser, A. J. 2007, online database for 626 L and T dwarfs at Dwarfarchives.org (status: 1 October 2007)Google Scholar
Hambly, N. C., et al. 2001, MNRAS 326, 1279CrossRefGoogle Scholar
Hambly, N. C., Henry, T. J., Subasavage, J. P., Brown, M. A., & Jao, W.-C. 2004, AJ 128, 437CrossRefGoogle Scholar
Henry, T. J., Jao, W.-C., Subasavage, J. P., Beaulieu, T. D., Ianna, P. A., Costa, E., & Méndez, R. A. 2006, AJ 132, 2360CrossRefGoogle Scholar
Ibata, R., Irwin, M., Bienaymé, O., Scholz, R., & Guibert, J. 2000, ApJ 532, L41CrossRefGoogle Scholar
Kirkpatrick, J. D. 2005, ARAA 43, 195CrossRefGoogle Scholar
Kirkpatrick, J. D., Looper, D. L., Burgasser, A. J., Cruz, K. L., Cushing, M. C., & Schurr, S. D. 2007, AAS Meeting Abstracts 210, #17.07Google Scholar
Lépine, S., Rich, R. M., & Shara, M. M. 2005, ApJ 633, L121CrossRefGoogle Scholar
Lépine, S., Rich, R. M., Neill, J. D., Caulet, A., & Shara, M. M. 2002, ApJ 581, L47CrossRefGoogle Scholar
Luyten, W. J. 1979a, LHS Catalogue: a catalogue of stars with proper motions exceeding 0.5″ annually, Minneapolis, University of MinnesotaGoogle Scholar
Luyten, W. J. 1979b, New Luyten Catalogue of stars with proper motions larger than two tenths of an arcsecond (NLTT), Minneapolis, University of MinnesotaGoogle Scholar
McCaughrean, M. J., Close, L. M., Scholz, R.-D., Lenzen, R., Biller, B., Brandner, W., Hartung, M., & Lodieu, N. 2004, A&A 413, 1029Google Scholar
Nakajima, T., Oppenheimer, B. R., Kulkarni, S. R., Golimowski, D. A., Matthews, K., & Durrance, S. T. 1995, Nature 378, 463CrossRefGoogle Scholar
Phan-Bao, N., et al. 2007, MNRAS submitted, arXiv:0708.4169Google Scholar
Phan-Bao, N., et al. 2006, MNRAS 366, L40CrossRefGoogle Scholar
Pokorny, R. S., Jones, H. R. A., & Hambly, N. C. 2003, A&A 397, 575Google Scholar
Pravdo, S. H., Shaklan, S. B., & Lloyd, J. 2005, ApJ 630, 528CrossRefGoogle Scholar
Rebolo, R., Zapatero-Osorio, M. R., & Martin, E. L. 1995, Nature 377, 129CrossRefGoogle Scholar
Reid, I. N., Kirkpatrick, J. D., Gizis, J. E., Dahn, C. C., Monet, D. G., Williams, R. J., Liebert, J., & Burgasser, A. J. 2000, AJ 119, 369CrossRefGoogle Scholar
Röser, S., Schilbach, E., & Scholz, R.-D. in preparationGoogle Scholar
Ruiz, M. T., Leggett, S. K., & Allard, F. 1997, ApJ 491, L107CrossRefGoogle Scholar
Salim, S., Lépine, S., Rich, R. M., & Shara, M. M. 2003, ApJ 586, L149CrossRefGoogle Scholar
Schmidt, S. J., Cruz, K. L., Bongiorno, B. J., Liebert, J., & Reid, I. N. 2007, AJ 133, 2258CrossRefGoogle Scholar
Scholz, R.-D. & Meusinger, H. 2002, MNRAS 336, L49CrossRefGoogle Scholar
Scholz, R.-D., McCaughrean, M. J., Lodieu, N., & Kuhlbrodt, B. 2003, A&A 398, L29Google Scholar
Scholz, R.-D., Lehmann, I., Matute, I., & Zinnecker, H. 2004a, A&A 425, 519Google Scholar
Scholz, R.-D., Lodieu, N., & McCaughrean, M. J. 2004b, A&A 428, L25Google Scholar
Teegarden, B. J., et al. 2003, ApJ 589, L51CrossRefGoogle Scholar
Tinney, C. G. 1998, MNRAS 296, L42CrossRefGoogle Scholar
Tinney, C. G., Burgasser, A. J., Kirkpatrick, J. D., & McElwain, M. W. 2005, AJ 130, 2326CrossRefGoogle Scholar
Vrba, F. J., et al. 2004, AJ 127, 2948CrossRefGoogle Scholar
Zuckerman, B. & Becklin, E. E. 1992, ApJ 386, 260CrossRefGoogle Scholar