Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T18:54:56.315Z Has data issue: false hasContentIssue false

ANTARES: Time-Domain Discovery in the Era of LSST

Published online by Cambridge University Press:  29 August 2019

M. Soraisam
Affiliation:
National Optical Astronomy Observatory, Tucson, AZ, USA email: soraisam@noao.edu
T. Matheson
Affiliation:
National Optical Astronomy Observatory, Tucson, AZ, USA email: soraisam@noao.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The revolution in time-domain astronomy has arrived. Large-scale surveys are detecting events at an unparallelled rate, and discoveries of new and exotic objects abound. In just a few short years, the Large Synoptic Survey Telescope will begin operations in Chile. At that point, the rate of production of time-domain events will jump by a factor of at least a hundred. The traditional techniques of handling each detection individually will not scale to those current and future productions. The ANTARES project is a joint venture between NOAO and the University of Arizona Computer Science Department to develop a software infrastructure system to process time-domain events automatically at the scale and rate that LSST will generate them.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

Footnotes

Presented by Thomas Matheson

References

Alard, C., & Lupton, R. H. 1998, ApJ, 503, 325CrossRefGoogle Scholar
Bloom, J. S., et al. 2012, PASP, 124, 1175CrossRefGoogle Scholar
Borne, K. D. 2008, AN, 329, 255Google Scholar
du Buisson, L., Sivanandam, N., Bassett, B. A., & Smith, M. 2015, MNRAS, 454, 2026CrossRefGoogle Scholar
Goldstein, D. A., et al. 2015, AJ, 150, 82CrossRefGoogle Scholar
Klencki, J., Wyrzykowski, L., Kostrzewa-Rutkowska, Z., & Udalski, A. 2016, AcA, 66, 15Google Scholar
Lister, T. A., Greenstreet, S., Gomez, E., Christensen, E., & Larson, S. 2016, in: Chesley, S. R., Morbidelli, A., Jedicke, R., & Farnocchia, D. (eds.), Asteroids: New Observations, New Models, Proc. IAUS 318 (CUP: Cambridge, UK), p. 321Google Scholar
Masci, F., et al. 2017, PASP, 129, 4002CrossRefGoogle Scholar
Morii, M., et al. 2016, PASJ, 68, 104CrossRefGoogle Scholar
Ridgway, S. T., Matheson, T., Mighell, K. J., Olsen, K. A., & Howell, S. B. 2014, ApJ, 796, 53CrossRefGoogle Scholar
Saha, A., Matheson, T., Snodgrass, R., Kececioglu, J., Narayan, G., Seaman, R., Jenness, T., & Axelrod, T. 2014, Proc. SPIE, 914908Google Scholar
Saha, A., et al. 2016, Proc. SPIE, 99100FGoogle Scholar
Williams, R. D., Djorgovski, S. G., Drake, A. J., Graham, M. J., & Mahabal, A. 2009, ADASS XVIII, 411, 115Google Scholar
Wozniak, P., 2014, in: Wozniak, P. R., Graham, M. J., Mahabal, A. A., & Seaman, R. (eds.), Proc. Third Hot-wiring the Transient Universe Workshop, p. 209Google Scholar
Wright, D. E., et al. 2015, MNRAS, 449, 451CrossRefGoogle Scholar