Hostname: page-component-7dd5485656-7jgsp Total loading time: 0 Render date: 2025-10-30T17:45:25.698Z Has data issue: false hasContentIssue false

An end-to-end strategy for recovering a free-form potential from a snapshot of stellar coordinates

Published online by Cambridge University Press:  30 October 2025

W. Tenachi*
Affiliation:
Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg, France
R. Ibata
Affiliation:
Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg, France
F. Diakogiannis
Affiliation:
Data61, CSIRO, Kensington, WA 6155, Australia

Abstract

New large observational surveys such as Gaia are leading us into an era of data abundance, offering unprecedented opportunities to discover new physical laws through the power of machine learning. Here we present an end-to-end strategy for recovering a free-form analytical potential from a mere snapshot of stellar positions and velocities. First we show how auto-differentiation can be used to capture an agnostic map of the gravitational potential and its underlying dark matter distribution in the form of a neural network. However, in the context of physics, neural networks are both a plague and a blessing as they are extremely flexible for modeling physical systems but largely consist in non-interpretable black boxes. Therefore, in addition, we show how a complementary symbolic regression approach can be used to open up this neural network into a physically meaningful expression. We demonstrate our strategy by recovering the potential of a toy isochrone system.

Information

Type
Poster Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Binney, J., & Tremaine, S. 2011, Galactic dynamics, Vol. 13 (Princeton university press)CrossRefGoogle Scholar
Bullock, J. S., & Boylan-Kolchin, M. 2017, ARAA, 55, 343 CrossRefGoogle Scholar
Gaia Collaboration. 2022, A&AGoogle Scholar
Hou, L. G., & Han, J. L. 2015, MNRAS, 454, 626 Google Scholar
Ibata, R., Diakogiannis, F. I., Famaey, B., & Monari, G. 2021 a, ApJ, 915, 5CrossRefGoogle Scholar
Ibata, R., Malhan, K., Martin, N., et al. 2021 b, ApJ, 914, 123 CrossRefGoogle Scholar
Kotelnikov, A., Baranchuk, D., Rubachev, I., & Babenko, A. 2022, arXiv preprint arXiv:2209.15421 Google Scholar
Malhan, K., Ibata, R. A., Sharma, S., et al. 2022, ApJ, 926, 107 CrossRefGoogle Scholar
Michtchenko, T. A., Vieira, R. S. S., Barros, D. A., & Lépine, J. R. D. 2017, A&A, 597, A39 CrossRefGoogle Scholar
Oria, P.-A., Tenachi, W., Ibata, R., et al. 2022, ApJL, 936, L3 CrossRefGoogle Scholar
Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. 2021, JMLR, 22, 2617 Google Scholar
Paszke, A., Gross, S., Massa, F., et al. 2019, NeurIPS, 32Google Scholar
Tenachi, W., Ibata, R., & Diakogiannis, F. I. 2023, arXiv e-prints, arXiv:2303.03192 Google Scholar
Tenachi, W., Oria, P.-A., Ibata, R., et al. 2022, ApJL, 935, L22 CrossRefGoogle Scholar