Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T08:50:37.987Z Has data issue: false hasContentIssue false

ALMA Explorations of Warm Dense Molecular Gas in Nearby LIRGs

Published online by Cambridge University Press:  09 February 2015

C. Kevin Xu*
Affiliation:
Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 email: cxu@ipac.caltech.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present results of ALMA (Cycle-0) observations of the CO (6-5) line emission and the 435μm continuum of two nearby luminous infrared galaxies (LIRGs) NGC 34 (a major merger with an AGN) and NGC 1614 (a minor merger with a circum-nuclear starburst). Using receivers in the highest frequency ALMA band available (Band-9), these observations achieved the best angular resolutions (∼0″.25) for ALMA Cycle-0 observations and resolved for the first time distributions of warm dense molecular gas (n > 105 cm−3, T > 100 K) in LIRGs with spatial resolutions better than 100 pc. Our ALMA data show a very tight correlation between the CO (6-5) line emission and the 435μm dust continuum emission, suggesting the warm dense molecular gas dominates the ISM in the central kpc of LIRGs, and gas heating and dust heating in the warm dense gas cores are strongly coupled. On the other hand, we saw very different spatial distributions and kinematic properties of warm dense gas in the two LIRGs, indicating that physical conditions in the ISM can be very different in different LIRGs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Armus, L., et al. 2009, PASP, 121, 599CrossRefGoogle Scholar
Barnes, J. & Hernquist, L. 1996, ApJ, 471, 115CrossRefGoogle Scholar
Bryant, P. M. & Scoville, N. Z. 1999, AJ, 117, 2632CrossRefGoogle Scholar
Downes, D. & Solomon, P. M. 1998, ApJ, 507, 615CrossRefGoogle Scholar
Fernandez, X., Petric, A. O., Schweizer, F., & van Gorkom, J. H. 2014, arXiv: 1401.1821Google Scholar
Gao, Y., Lo, K. Y., Lee, S.-W., & Lee, T.-H. 2001, ApJ, 548, 172CrossRefGoogle Scholar
Hopkins, P. F., et al. 2009, ApJ, 691, 1186Google Scholar
Iono, D., Ho, P. T. P., Yun, M. S., et al. 2004, ApJ, 616, L63CrossRefGoogle Scholar
Iono, D., Wilson, C. D., Yun, M. S., et al. 2009, ApJ, 695, 1537CrossRefGoogle Scholar
Lu, N., Zhao, Y., Xu, K. C., et al. 2014, ApJ, 787, L23CrossRefGoogle Scholar
Malken, M. A., et al. 1998, ApJS, 117, 25CrossRefGoogle Scholar
Sakamoto, K., Aalto, S., Costagliola, F., et al. 2013, ApJ, 764, 42CrossRefGoogle Scholar
Sakamoto, K., Wang, J., Wiedner, M. C., et al. 2008, ApJ, 684, 957CrossRefGoogle Scholar
Sanders, D. B., Scoville, N. Z., & Soifer, B. T. 1991, ApJ, 370, 158CrossRefGoogle Scholar
Scoville, N. Z., Sanders, D. B., Sargent, A. I., et al. 1989, ApJ, 345, L25CrossRefGoogle Scholar
Scoville, N. Z., Yun, M. S., & Bryant, P. M. 1997, ApJ, 484, 702CrossRefGoogle Scholar
van der Werf, P. P., Isaak, K. G., Meijerink, R., et al. 2010, A&A, 518, L42Google Scholar
Wang, J., Zhang, Q., Wang, Z., et al. 2004, ApJ, 616, L67CrossRefGoogle Scholar
Wilson, C. D., Petitpas, G. R., Iono, D., et al. 2008, ApJS, 178, 189CrossRefGoogle Scholar
Wootten, A. & Thompson, A. R. 2009, IEEE, 97, 1463CrossRefGoogle Scholar
Xu, C. K., Cao, C., Lu, N., et al. 2014, ApJ, 787, 48CrossRefGoogle Scholar
Yao, L., Seaquist, E. R., Kuno, N., & Dunne, L. 2003, ApJ, 588, 771CrossRefGoogle Scholar