Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:06:47.607Z Has data issue: false hasContentIssue false

Aliphatic hydrocarbon content of interstellar dust

Published online by Cambridge University Press:  12 October 2020

T. W. Schmidt
Affiliation:
ARC Centre of Excellence in Exciton Science, School of Chemistry, UNSW Sydney NSW 2052, Australia; email: timothy.schmidt@unsw.edu.au
B. Günay
Affiliation:
Department of Astronomy and Space Sciences, Ege University, 35100 Bornova, Izmir, Turkey; email: burcu.gunay@ege.edu.tr
M. G. Burton
Affiliation:
Armagh Observatory and Planetarium, College Hill, Armagh, BT61 9DG, Northern Ireland, UK
A. Rawal
Affiliation:
Mark Wainwright Analytical Centre, UNSW Sydney, NSW 2052, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mid-IR spectrum of the interstellar medium contains both aromatic and aliphatic hydrocarbon features. These are generally attributed to carbonaceous dust. The aliphatic component is of particular interest because it produces a significant 3.4 μm absorption feature. The optical depth of this feature is related to the number and type of aliphatic carbon C–H bonds in the line of sight. It is possible to estimate the column density of aliphatic carbon from quantitative analysis of the 3.4 μm interstellar feature, providing that the absorption coefficient of interstellar aliphatic hydrocarbon is known. We produced interstellar dust analogues with spectra closely matching astronomical observations. Using a combination of FTIR and 13C NMR spectroscopy, we determined an integrated absorption coefficient of the aliphatic component. The results thus obtained permit direct calibration of astronomical observations, providing rigorous estimates of the amount of aliphatic carbon in the ISM.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Asplund, M., Grevesse, N., & Sauval, A. J., 2006, Nucl. Phys. A, 777, 1 CrossRefGoogle Scholar
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P., 2009, ARA&A, 47, 481 CrossRefGoogle Scholar
Cardelli, J. A., Meyer, D. M., Jura, M., & Savage, B. D., 1996, ApJ, 467, 334 CrossRefGoogle Scholar
Chiar, J. E., Tielens, A. G. G. M., Adamson, A. J., & Ricca, A., 2013, ApJ, 770, 78 CrossRefGoogle Scholar
Contreras, C. S. & Salama, F., 2013, ApJS, 208, 6 CrossRefGoogle Scholar
d’Hendecourt, L. B. & Allamandola, L. J., 1986, A&AS, 64, 453 Google Scholar
Dartois, E., Marco, O., Muñoz-Caro, G. M., Brooks, K., Deboffle, D., & d’Hendecourt, L., 2004, A&A, 423, 549 Google Scholar
Duley, W. W., & Williams, D. A., 1981, MNRAS, 196, 269 CrossRefGoogle Scholar
Duley, W. W., Scott, A. D., Seahra, S., & Dadswell, G., 1998, ApJ, 503, L183 CrossRefGoogle Scholar
Dwek, E. 1997, ApJ, 484, 779 CrossRefGoogle Scholar
Furton, D. G., Laiho, J. W., & Witt, A. N., 1999, ApJ, 526, 752 CrossRefGoogle Scholar
Gadallah, K. A. K., 2015, Adv. Space Res., 55, 705 CrossRefGoogle Scholar
Grevesse, N., & Sauval, A. J., 1998, Space Sci. Rev., 85, 161 CrossRefGoogle Scholar
Günay, B., Schmidt, T. W., Burton, M. G., Afsar, M., Krechkivska, O., Nauta, K., Kable, S. H., & Rawal, A., 2018, MNRAS, 479, 4336 CrossRefGoogle Scholar
Kim, S.-H., & Martin, P. G. 1996, ApJ, 462, 296 CrossRefGoogle Scholar
Kwok, S., 2009, Adv. Space Res., 319, 5 Google Scholar
Kwok, S., 2016, Astronomy and Astrophysics Review, 24, 1 CrossRefGoogle Scholar
Lodders, K., 2003, ApJ, 591, 1220 CrossRefGoogle Scholar
Mathis, J. S., Rumpl, W., & Nordsieck, K. H., 1977, ApJ, 217, 425 CrossRefGoogle Scholar
Mennella, V., Brucato, J. R., Colangeli, L., & Palumbo, P., 2002, ApJ, 569, 531 CrossRefGoogle Scholar
Parvathi, V. S., Sofia, U. J., Murthy, J., & Babu, B. R. S., 2012, ApJ, 760, 36 CrossRefGoogle Scholar
Pendleton, Y. J., Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M., & Sellgren, K., 1994, ApJ, 437, 683 CrossRefGoogle Scholar
Robertson, J, 2002, Mater. Sci. Eng. R, 37, 129 CrossRefGoogle Scholar
Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M., Sellgren, K., Tapia, M., & Pendleton, Y., 1991, ApJ, 371, 607 CrossRefGoogle Scholar
Snow, T. P., & Witt, A. N., 1995, Science, 270, 1455 CrossRefGoogle Scholar
Sofia, U. J., & Meyer, D. M., 2001, ApJ, 554, L221 CrossRefGoogle Scholar
Steglich, M., Jäger, C., Huisken, F., Friedrich, M., Plass, W., Räder, H.-J., Müllen, K., & Henning, T., 2013, ApJS, 208, 26 CrossRefGoogle Scholar