Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T09:51:59.264Z Has data issue: false hasContentIssue false

AGN and Starbursts in Dusty Galaxy Mergers: Insights from the Great Observatories All-sky LIRG Survey

Published online by Cambridge University Press:  25 July 2014

Joseph M. Mazzarella
Affiliation:
MS 100-22 Infrared Processing & Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA email: mazz@ipac.caltech.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Great Observatories All-sky LIRG Survey (GOALS) is combining imaging and spectroscopic data from the Herschel, Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes augmented with extensive ground-based observations in a multiwavelength study of approximately 180 Luminous Infrared Galaxies (LIRGs) and 20 Ultraluminous Infrared Galaxies (ULIRGs) that comprise a statistically complete subset of the 60μm-selected IRAS Revised Bright Galaxy Sample. The objects span the full range of galaxy environments (giant isolated spirals, wide and close pairs, minor and major mergers, merger remnants) and nuclear activity types (Seyfert 1, Seyfert 2, LINER, starburst/HII), with proportions that depend strongly on the total infrared luminosity. I will review the science motivations and present highlights of recent results selected from over 25 peer-reviewed journal articles published recently by the GOALS Team. Statistical investigations include detection of high-ionization Fe K emission indicative of deeply embedded AGN, comparison of UV and far-IR properties, investigations of the fraction of extended emission as a function of wavelength derived from mid-IR spectroscopy, mid-IR spectral diagnostics and spectral energy distributions revealing the relative contributions of AGN and starbursts to powering the bolometric luminosity, and quantitative structure analyses that delineate the evolution of stellar bars and nuclear stellar cusps during the merger process. Multiwavelength dissections of individual systems have unveiled large populations of young star clusters and heavily obscured AGN in early-stage (II Zw 96), intermediate-stage (Mrk 266, Mrk 273), and late-stage (NGC 2623, IC 883) mergers. A recently published study that matches numerical simulations to the observed morphology and gas kinematics in mergers has placed four systems on a timeline spanning 175-260 million years after their first passages, and modeling of additional (U)LIRGs is underway. A very brief description of ongoing work with Herschel and ALMA will be given. The talk will conclude with a discussion of the demographics of dual AGN (kpc-scale orbits) in the GOALS sample, including the difficulty of their detection and confirmation, a proposed sequence representing a progression from dual AGN to binary AGNs (sub-pc scale orbits), and implications for the scarcity of confirmed binary QSOs in recent large surveys. Grant support from NASA is gratefully acknowledged.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Armus, L., Mazzarella, J. M., Evans, A. S.et al. 2009, PASP, 121, 559CrossRefGoogle Scholar
Barnes, J. E. & Hibbard, J. E. 2009, AJ, 137, 3071CrossRefGoogle Scholar
Caputi, K. I., Lagache, G., Yan, Linet al. 2007, ApJ, 660, 97CrossRefGoogle Scholar
Daz-Santos, T., Charmandaris, V. and Armus, L.et al. 2010, ApJ, 723, 993CrossRefGoogle Scholar
Daz-Santos, T., Charmandaris, V., Armus, L.et al. 2011, ApJ, 741, 32Google Scholar
Daz-Santos, T., Armus, L, Charmandaris, V.et al. 2013, ApJ, 774, 68CrossRefGoogle Scholar
Dopita, M. A., Armus, L., Kewley, L. J.et al. 2011, Ap&SS, 333, 225Google Scholar
Evans, A. S., Vavilkin, T., Pizagno, J.et al. 2008, ApJ (Letters), 675, L69CrossRefGoogle Scholar
Haan, S., Surace, J. A., Armus, L.et al. 2011, AJ, 141, 100CrossRefGoogle Scholar
Haan, S., Armus, L., Surace, J. A.et al. 2013, MNRAS, 434, 1264CrossRefGoogle Scholar
Hopkins, P. F., Lauer, T. R., Cox, T. J.et al. 2009, ApJS, 181, 486Google Scholar
Howell, J. H., Mazzarella, J. M., Chan, B. H. P.et al. 2007, AJ, 134, 2086CrossRefGoogle Scholar
Howell, J. H., Armus, L., Mazzarella, J. M.et al. 2010, ApJ, 715, 572CrossRefGoogle Scholar
Inami, H., Armus, L., Surace, J. A.et al. 2010, AJ, 140, 63CrossRefGoogle Scholar
Iwasawa, K., Sanders, D. B., Evans, A. S.et al. 2009, ApJ (Letters), 695, L103Google Scholar
Iwasawa, K., Sanders, D. B., Teng, S. H.et al. 2011, A&A, 529, A106Google Scholar
Iwasawa, K., Mazzarella, J. M., Surace, J. A.et al. 2011, A&A, 528, A137Google Scholar
Kim, D.-C., Evans, A. S., Vavilkin, T.et al. 2013, ApJ, 768, 102Google Scholar
Le Floc'h, E., Papovich, C., Dole, H.et al. 2005, ApJ, 632, 169CrossRefGoogle Scholar
Leroy, A. K., Evans, A. S., Momjian, E.et al. 2011, ApJ (Letters), 739, L25CrossRefGoogle Scholar
Mazzarella, J. M., Iwasawa, K., Vavilkin, T.et al. 2012, AJ, 144, 125CrossRefGoogle Scholar
Modica, F., Vavilkin, T., Evans, A. S., et al. 2012, AJ, 143, 16CrossRefGoogle Scholar
Petric, A. O., Armus, L. A., Howell, J.et al. 2011, ApJ, 730, 28Google Scholar
Privon, G. C., Barnes, J. E., Evans, A. S.et al. 2013, ApJ, 771, 120CrossRefGoogle Scholar
Sanders, D. B., Mazzarella, J. M., Kim, D.-C.et al. 2003, AJ 126 1607 (RBGS)Google Scholar
Sanders, D. B. & Mirabel, I. F. 1996, ARAA, 34, 749CrossRefGoogle Scholar
Stierwalt, S., Armus, L., & Surace, J. A.et al. 2013, ApJS, 206, 1Google Scholar
U, Vivian, Sanders, D. B., Mazzarella, J. M.et al. 2012, ApJS, 203, 9CrossRefGoogle Scholar
Veilleux, S. 2006, New Astron. Revs, 50, 701Google Scholar
Xu, C. K., Cao, C., Lu, N.et al. 2014, ApJ, submittedGoogle Scholar