Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T11:41:41.589Z Has data issue: false hasContentIssue false

Active and dust obscured star-forming galaxies at z ∼ 4 probed with UV spectral slope beta

Published online by Cambridge University Press:  10 June 2020

Satoshi Yamanaka
Affiliation:
Department of Environmental Science and Technology, Faculty of Design Technology, Osaka Sangyo University, 3-1-1, Nakagaito, Daito, Osaka574-8530, Japan email: s.yamanaka@est.osaka-sandai.ac.jp
Toru Yamada
Affiliation:
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan email: yamada@ir.isas.jaxa.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the stellar population of star-forming galaxies at z ∼ 4 by focusing on their slope of rest-frame ultraviolet continuum called UV spectral slope β. We analyze the sample of bright Lyman Break Galaxies (LBGs) with Subaru/i′≤26.0in the Subaru/XMM-Newton Deep Survey field. Our detailed SED fitting analysis indicates that the LBGs with observed UV slope > −1.7, , Av > 1.0, and intrinsic UV slope < −2.5 are the intrinsically active star-forming galaxies with star formation rates larger than a few × 102 Myr−1. A significant fraction of the UV-selected LBGs at z ∼ 4 is on-going active and dust obscured star-forming galaxies.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Ashby, M. L. N., Willner, S. P., Fazio, G. G., Huang, J.-S., Arendt, R., Barmby, P., Barro, G., Bell, E. F., et al. 2013, ApJ, 769, 8010.1088/0004-637X/769/1/80CrossRefGoogle Scholar
Calzetti, D., Kinney, A. L., & Storch-Bergmann, T. 1994, ApJ, 429, 58210.1086/174346CrossRefGoogle Scholar
Calzetti, D., Armus, L., Bohlin, R. C., Kinney, A. L., Koornneef, J., & Storchi-Bergmann, T. 2000, ApJ, 533, 68210.1086/308692CrossRefGoogle Scholar
Furusawa, H., Kosugi, G., Akiyama, M., Takata, T., Sekiguchi, K., Tanaka, I., Iwata, I., Kajisawa, M., et al. 2008, ApJS, 176, 110.1086/527321CrossRefGoogle Scholar
Furusawa, H, Kashikawa, N, Kobayashi, M. A. R., Dunlop, J. S., Shimasaku, K., Takata, T., Sekiguchi, K., Naito, Y., et al. 2016, ApJ, 822, 4610.3847/0004-637X/822/1/46CrossRefGoogle Scholar
Grogin, N. A., Kocevski, D. D., Faber, S. M., Ferguson, H. C., Koekemoer, A. M., Riess, A. G, Acquaviva, V., Alexander, D. M., et al. 2011, ApJS, 197, 3510.1088/0067-0049/197/2/35CrossRefGoogle Scholar
Koekemoer, A. M., Faber, S. M., Ferguson, H. C., Grogin, N. A., Kocevski, D. D., Koo, D. C., Lai, K., Lotz, J. M., et al. 2011, ApJS, 197, 3610.1088/0067-0049/197/2/36CrossRefGoogle Scholar
Lawrence, A., Warren, S. J., Almaini, O., Edge, A. C., Hambly, N. C., Jameson, R. F., Lucas, P., Casali, M., et al. 2007, MNRAS, 379, 159910.1111/j.1365-2966.2007.12040.xCrossRefGoogle Scholar