Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T23:06:00.407Z Has data issue: false hasContentIssue false

Ab initio investigations of isopropyl cyanide reaction mechanisms and kinetics of formation on an icy grain model

Published online by Cambridge University Press:  12 October 2020

Boutheïna Kerkeni*
Affiliation:
Institut Supérieur des Arts Multimédia de la Manouba, Université de la Manouba, 2010 la Manouba, Tunisia Faculté des Sciences de Tunis, Département de Physique, (LPMC), Université de Tunis El Manar, 2092 Tunis, Tunisia Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-92195 Meudon, France email: boutheina.kerkeni@isamm.uma.tn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Isopropyl-cyanide (iso-PrCN) was recently observed in Sagittarius B2 with an abundance higher than its straight-chain structure isomer (n-PrCN). Here we study theoretically by means of [UMP2(full)/aug-cc-pVTZ/Amber] a hybrid ab initio/molecular mechanics methodology, the routes leading to its formation on a formaldehyde doped water ice grain model of the interstellar medium. The reaction path and the energetics are calculated, the mechanism is found to be exothermic by ∼ 30 kcal/mol and the barrier is ∼ 70 kcal/mol. We use the CVT/ZCT semiclassical method to predict the kinetics of the reaction path starting from initially adsorbed HCN and CH2CHCH3 molecules colliding from the gas phase over the temperature range [100–500K].

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Belloche, A., Garrod, R. T., Muller, H. S. P., & Menten, K. M. 2014, Science, 345, 1584 CrossRefGoogle Scholar
Boogert, A. C. A., Pontoppidan, K. M., Knez, C., Lahuis, F, Kessler-Silacci, J., van Dishoeck, E. F., et al. 2008, AJ, 678, 985 CrossRefGoogle Scholar
Case, D. A., Ben-Shalom, I. Y., Brozell, S. R., et al. AMBER 2018, University of California, San FranciscoGoogle Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B. et al. Gaussian 09 Revision A.1, 2009, Gaussian Inc. Wallingford CT 2009Google Scholar
Garrod, R. T., Belloche, A., MuÌ^ller, H. S. P., & Menten, K. M. 2017, A&A, 601, A48 Google Scholar
Herbst, E. 2001, Publ. Astronon. Soc. Pac., 30, 168 Google Scholar
Hratchian, & Schlegel, , 2005, J. Chem. Theor. Comput. 1, 61 CrossRefGoogle Scholar
Kaiser, R. 2002, Chem. Rev., 102, 1309 CrossRefGoogle Scholar
Kerkeni, B. & Toubin, C. 2019, J. Phys. Chem. in preparationGoogle Scholar
Kerkeni, B., Gamez, V., Senent, M.-L. et al. 2019, PCCP, 21, 23375 CrossRefGoogle Scholar
Lu, D. H., Truong, T. N., Melissas, V. S., et al. 1992, POLYRATE 4: A New Version of a Computer Program for the Calculation of Chemical Reaction Rates for Polyatomics. Comput.Phys. Commun., 71, 235 CrossRefGoogle Scholar
Mac Kellar, A. 1940, Publ. Astronon. Soc. Pac., 52, 187 CrossRefGoogle Scholar
Marcelino, N., Cernicharo, J., Agúndez, M. et al. 2007, ApJL., 665, L127 CrossRefGoogle Scholar
Margulès, L., McGuire, B. A., Senent, M. L., Motiyenko, R. A., Remijan, A., & Guillemin, J. C. 2017, A&A, 601, A50 Google Scholar
McGuire, B. A. 2018, ApJSS, 239, 1 CrossRefGoogle Scholar
Moller, C. & Plesset, M. S. 1934, Phys. Rev., 46, 618 CrossRefGoogle Scholar
Pagani, L., Favre, C., Goldsmith, P. F., Bergin, E. A., Snell, R., & Melnick, G. 2017, A&A, 604, A32 Google Scholar
Pontoppidan, K. M., van Dishoeck, E. F., & Dartois, E. 2004, A&A, 426, 925 Google Scholar
van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., Berendsen, H. J. C. 2005, J. Comp Chem, 26, 1701 CrossRefGoogle Scholar
Woon, D. E. & Dunning, T. H. J. 1993, J. Chem. Phys., 98, 1358 CrossRefGoogle Scholar
Skodje, R. T., Truhlar, D. G., Garrett, B. C. A. J. et al. 1981, Phys. Chem. 85, 3019 CrossRefGoogle Scholar