Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T17:00:38.389Z Has data issue: false hasContentIssue false

The 3D solar minimum with differential emission measure tomography

Published online by Cambridge University Press:  05 July 2012

Alberto M. Vásquez
Affiliation:
Instituto de Astronomía y Física del Espacio (CONICET-UBA), CC 67 - Suc 28, (C1428ZAA) Ciudad de Buenos Aires, Argentina email: albert@iafe.uba.ar Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Argentina
Richard A. Frazin
Affiliation:
Deptartment of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Zhenguang Huang
Affiliation:
Deptartment of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Ward B. Manchester IV
Affiliation:
Deptartment of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Paul Shearer
Affiliation:
Deptartment of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Differential emission measure tomography (DEMT) makes use of extreme ultraviolet (EUV) image series to deliver two products: a) the three-dimensional (3D) reconstruction of the coronal emissivity in the instrumental bands, and b) the 3D distribution of the local differential emission measure (LDEM). The LDEM allows, in turn, construction of 3D maps of the electron density and temperature distribution. DEMT is being currently applied to the space-based EUV imagers, allowing reconstruction of the inner corona in the height range 1.00 to 1.25 R. In this work we applied DEMT to different Carrington Rotations corresponding to the last two solar Cycle minima. To reconstruct the 2008 minimum we used data taken by the Extreme UltraViolet Imager (EUVI), on board the Solar TErrestrial RElations Observatory (STEREO) spacecraft, and to reconstruct the 1996 minimum we used data taken by the Extreme ultraviolet Imaging Telescope (EIT), on board the Solar and Heliospheric Observatory (SOHO). We show here comparative results, discussing the observed 3D density and temperature distributions in the context of global potential magnetic field extrapolations. We also compare the DEMT results with other observational and modeling efforts of the same periods.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Bryans, P., Landi, E., & Savin, W. 2009, ApJ, 691, 15401559CrossRefGoogle Scholar
Butala, M. D., Hewett, R. J., Frazin, R. A., & Kamalabadi, F. 2010, Solar Phys., 262, 495509CrossRefGoogle Scholar
Feldman, U., Mandelbaum, P., Seely, J. L., Doschek, G. A., & Gursky, H. 1992, ApJ, 81, 387408Google Scholar
Frazin, R. A., Kamalabadi, F., & Weber, M. A. 2005, ApJ, 628, 10701080CrossRefGoogle Scholar
Frazin, R. A., Vásquez, A. M., & Kamalabadi, F. 2009, ApJ, 701, 547560CrossRefGoogle Scholar
Gibson, S. E., de Toma, G., Emery, B., Riley, P., Zhao, L., Elsworth, Y., Leamon, R. J., Lei, J., McIntosh, S., Mewaldt, R. A., Thompson, B. J., & Webb, D. 2011, Sol. Phys., 274, 527CrossRefGoogle Scholar
Li, J., Raymond, J. C., Acton, L. W., Kohl, J. L., Romoli, M., Noci, G., & Naletto, G. 1998, ApJ, 506, 431438CrossRefGoogle Scholar
Nuevo, F. A., Vásquez, A. M., Frazin, R. A., Huang, Z., & Manchester IV, W. B. 2012, this volumeGoogle Scholar
Shearer, P. & Frazin, R. A. 2011, Phys. Rev. Lett., submittedGoogle Scholar
Tóth, G., van der Holst, B., & Huang, Z. 2011, ApJ, 732, 102108CrossRefGoogle Scholar
Vásquez, A. M., Frazin, R. A., & Manchester IV, W. B. 2010, ApJ, 715, 13521365CrossRefGoogle Scholar
Vásquez, A. M., Huang, Z., Manchester IV, W. B., & Frazin, R. A. 2011, Sol. Phys., 274, 259284CrossRefGoogle Scholar
Wilhelm, K., Inhester, B., & Newmark, J. S. 2002, Astron. Astrophys., 382, 328341CrossRefGoogle Scholar