Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T03:40:47.482Z Has data issue: false hasContentIssue false

3 things they don’t tell you about star clusters

Published online by Cambridge University Press:  11 March 2020

Florent Renaud*
Affiliation:
Department of Astronomy and Theoretical Physics, Lund Observatory, Box 43, SE-221 00 Lund, Sweden email: florent@astro.lu.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dense stellar systems in general and star clusters in particular have recently regained the interest of the extragalactic and even cosmology communities, due to the role they could play as actors and probes of re-ionization, galactic archeology and the dark matter content of galaxies, among many others. In the era of the exploitation and the preparation of large stellar surveys (Gaia, APOGEE, 4MOST, WEAVE), of the detection of gravitational waves mostly originating from dense regions like the cores of clusters (Ligo, LISA), and in an always more holistic view of galaxy formation (HARMONI, Euclid, LSST†), a complete theory on the formation and evolution of clusters is needed to interpret the on-going and forthcoming data avalanche. In this context, the community carries an effort to model the aspects of star cluster formation and evolution in galactic and even cosmological context. However, it is not always easy to understand the caveats and the shortcuts taken in theories and simulations, and their implications on the conclusions drawn. I take the opportunity of this document to highlight three of these topics and discuss why some shortcuts taken by the community are or could be misleading.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

Footnotes

Soon to be known as the Vera Rubin Survey Telescope (VRST).

References

Adamo, A., Ryon, J. E., Messa, M., et al. 2017, ApJ, 841, 131CrossRefGoogle Scholar
Agertz, O., Lake, G., Teyssier, R., et al. 2009, MNRAS, 392, 294CrossRefGoogle Scholar
Bekki, K., Jeřábková, T., & Kroupa, P. 2017, MNRAS, 471, 2242CrossRefGoogle Scholar
Cappellari, M., McDermid, R. M., Alatalo, K., et al. 2012, Nature, 484, 485CrossRefGoogle Scholar
den Brok, M., Peletier, R. F., Seth, A., et al. 2014, MNRAS, 445, 2385CrossRefGoogle Scholar
Dessauges-Zavadsky, M. & Adamo, A. 2018, MNRAS, 479, L118CrossRefGoogle Scholar
Dib, S. & Basu, S. 2018, A&A, 614, A43Google Scholar
Elmegreen, B. G. 2010, ApJ, 712, L184CrossRefGoogle Scholar
Elmegreen, D. M., Elmegreen, B. G., Kaufman, M., et al. 2006, ApJ, 642, 158CrossRefGoogle Scholar
Feldmeier, A., Neumayer, N., Seth, A., et al. 2014, A&A, 570, A2Google Scholar
Fellhauer, M. & Kroupa, P. 2003, Ap&SS, 284, 643Google Scholar
Fellhauer, M. & Kroupa, P. 2005, MNRAS, 359, 223CrossRefGoogle Scholar
Geha, M., Brown, T. M., Tumlinson, J., et al. 2013, ApJ, 771, 29CrossRefGoogle Scholar
Gieles, M. & Renaud, F. 2016, MNRAS, 463, L103CrossRefGoogle Scholar
Gnedin, O. Y. & Ostriker, J. P. 1999, ApJ, 513, 626CrossRefGoogle Scholar
Guillard, N., Emsellem, E., & Renaud, F. 2016, MNRAS, 461, 3620CrossRefGoogle Scholar
Hayward, C. C. & Hopkins, P. F. 2017, MNRAS, 465, 1682CrossRefGoogle Scholar
Keel, W. C., Kennicutt, Jr, R. C., Hummel, E., & van der Hulst, J. M. 1985, AJ, 90, 708CrossRefGoogle Scholar
Krause, M. G. H., Charbonnel, C., Bastian, N., & Diehl, R. 2016, A&A, 587, A53Google Scholar
Kruijssen, J. M. D., Pfeffer, J. L., Crain, R. A., & Bastian, N. 2019, MNRAS, 486, 3134CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A. 2003, ARA&A, 41, 57CrossRefGoogle Scholar
Li, H. & Gnedin, O. Y. 2018, arXiv e-prints, arXiv:1810.11036Google Scholar
Li, H., Gnedin, O. Y., Gnedin, N. Y., et al. 2017, ApJ, 834, 69CrossRefGoogle Scholar
Milosavljević, M. 2004, ApJ, 605, L13CrossRefGoogle Scholar
Motte, F., Nony, T., Louvet, F., et al. 2018, Nature Astronomy, 2, 478CrossRefGoogle Scholar
Ohlin, L., Renaud, F., & Agertz, O. 2019, MNRAS, 485, 3887CrossRefGoogle Scholar
Parmentier, G. & Gilmore, G. 2007, MNRAS, 377, 352CrossRefGoogle Scholar
Peterson, B. W., Struck, C., Smith, B. J., & Hancock, M. 2009, MNRAS, 400, 1208CrossRefGoogle Scholar
Pfeffer, J. & Baumgardt, H. 2013, MNRAS, 433, 1997CrossRefGoogle Scholar
Pfeffer, J., Kruijssen, J. M. D., Crain, R. A., & Bastian, N. 2018, MNRAS, 475, 4309CrossRefGoogle Scholar
Portegies Zwart, S. F., McMillan, S. L. W., & Gieles, M. 2010, ARA&A, 48, 431CrossRefGoogle Scholar
Renaud, F. 2010, PhD thesis, arXiv:1008.0331Google Scholar
Renaud, F. 2018, New A Rev., 81, 1CrossRefGoogle Scholar
Renaud, F., Agertz, O., & Gieles, M. 2017, MNRAS, 465, 3622CrossRefGoogle Scholar
Renaud, F., Bournaud, F., Agertz, O., et al. 2019, A&A, 625, A65Google Scholar
Renaud, F., Bournaud, F., & Duc, P.-A. 2015, MNRAS, 446, 2038CrossRefGoogle Scholar
Renaud, F., Bournaud, F., Kraljic, K., & Duc, P.-A. 2014, MNRAS, 442, L33CrossRefGoogle Scholar
Romeo, A. B. 2019, arXiv e-prints, arXiv:1905.05752Google Scholar
Romeo, A. B. & Mogotsi, K. M. 2017, MNRAS, 469, 286CrossRefGoogle Scholar
Romeo, A. B. & Mogotsi, K. M. 2018, MNRAS, 480, L23CrossRefGoogle Scholar
Tremaine, S. D., Ostriker, J. P., & Spitzer, Jr, L. 1975, ApJ, 196, 407CrossRefGoogle Scholar
Vesperini, E. 1998, MNRAS, 299, 1019CrossRefGoogle Scholar
Vesperini, E. 2001, MNRAS, 322, 247CrossRefGoogle Scholar
Vesperini, E. & Heggie, D. C. 1997, MNRAS, 289, 898CrossRefGoogle Scholar