No CrossRef data available.
Published online by Cambridge University Press: 23 December 2024
The newly discovered inertial modes in the Sun offer the opportunity to probe the solar convective zone down to the tachocline. While linear analysis predicts the frequencies and eigenfunctions of the modes, it gives no information about their excitation or their amplitudes. We present here a theoretical formalism for the stochastic excitation of the solar inertial modes by turbulent convection. The amplitudes predicted by our model are in complete agreement with observations, thus supporting the assumption that they are stochastically excited. Our work also uncovers a qualitative transition in the shape of the inertial mode spectrum, between m ≲ 5 where the modes are clearly resolved in frequency, and m ≳ 5 where the modes overlap. This complicates the interpretation of the high-m data, and suggests that a model for the whole shape of the power spectrum is necessary to exploit the full seismic potential of solar inertial modes.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.