Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T09:10:59.508Z Has data issue: false hasContentIssue false

A strongly convergent algorithm for solving multiple set split equality equilibrium and fixed point problems in Banach spaces

Published online by Cambridge University Press:  15 June 2023

E.C. Godwin
Affiliation:
School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa (220100908@stu.ukzn.ac.za; emmysworld05@yahoo.com; mewomoo@ukzn.ac.za; alakoyat1@ukzn.ac.za; timimaths@gmail.com)
O.T. Mewomo
Affiliation:
School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa (220100908@stu.ukzn.ac.za; emmysworld05@yahoo.com; mewomoo@ukzn.ac.za; alakoyat1@ukzn.ac.za; timimaths@gmail.com)
T.O. Alakoya
Affiliation:
School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa (220100908@stu.ukzn.ac.za; emmysworld05@yahoo.com; mewomoo@ukzn.ac.za; alakoyat1@ukzn.ac.za; timimaths@gmail.com)

Abstract

In this article, using an Halpern extragradient method, we study a new iterative scheme for finding a common element of the set of solutions of multiple set split equality equilibrium problems consisting of pseudomonotone bifunctions and the set of fixed points for two finite families of Bregman quasi-nonexpansive mappings in the framework of p-uniformly convex Banach spaces, which are also uniformly smooth. For this purpose, we design an algorithm so that it does not depend on prior estimates of the Lipschitz-type constants for the pseudomonotone bifunctions. Furthermore, we present an application of our study for finding a common element of the set of solutions of multiple set split equality variational inequality problems and fixed point sets for two finite families of Bregman quasi-nonexpansive mappings. Finally, we conclude with two numerical experiments to support our proposed algorithm.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alakoya, T. O. and Mewomo, O. T., S-Iteration inertial subgradient extragradient method for variational inequality and fixed point problems, Optimization (2023). doi: 10.1080/02331934.2023.2168482.CrossRefGoogle Scholar
Alakoya, T. O., Mewomo, O. T. and Shehu, Y., Strong convergence results for quasimonotone variational inequalities, Math. Methods Oper. Res. 95(2) (2022), 249279.10.1007/s00186-022-00780-2CrossRefGoogle Scholar
Alakoya, T. O., Uzor, V. A. and Mewomo, O. T., A new projection and contraction method for solving split monotone variational inclusion, pseudomonotone variational inequality, and common fixed point problems, Comput. Appl. Math. 42(1) (2023), Paper No. 3, .10.1007/s40314-022-02138-0CrossRefGoogle Scholar
Anh, P. N., A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optimization 62 (2013), 271283.10.1080/02331934.2011.607497CrossRefGoogle Scholar
Blum, E. and Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123145.Google Scholar
Bregman, L. M., The relaxation method for finding the common point of convex sets and its application to solution of problems in convex programming, U.S.S.R Comput. Math. Phys. 7 (1967), 200217.10.1016/0041-5553(67)90040-7CrossRefGoogle Scholar
Censor, Y. and Elfving, T., A multi-projection algorithms using Bregman projections in a product space, Numer. Algorithms 8 (1994), 221239.10.1007/BF02142692CrossRefGoogle Scholar
Censor, Y. and Reich, S., Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization 37 (1996), 323339.10.1080/02331939608844225CrossRefGoogle Scholar
Censor, Y., Gibali, A. and Reich, S., Algorithms for the split variational inequality problem, Numer. Algorithms 59 (2012), 301323.10.1007/s11075-011-9490-5CrossRefGoogle Scholar
Chidume, C. E., Geometric Properties of Banach Spaces and Nonlinear Iterations, Springer Verlag Series, Lecture Notes in Mathematics 2009.10.1007/978-1-84882-190-3CrossRefGoogle Scholar
Cholamjiak, P. and Sunthrayuth, P., A Halpern-type iteration for solving the split feasibility problem and fixed point problem of Bregman relatively nonexpansive semigroup in Banach spaces, Filomat 32 (9) (2018), 32113227.10.2298/FIL1809211CCrossRefGoogle Scholar
Cioranescu, I., Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems (Kluwer Academic, Dordrecht, 1990).10.1007/978-94-009-2121-4CrossRefGoogle Scholar
Combettes, P. L. and Hilstoaga, S. A., Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117136.Google Scholar
Eskandani, G. Z., Raeisi, M. and Rassias, T. M., A hybrid extragradient method for solving pseudomonotone equilibrium problems using Bregman distance, J. Fixed Point Theory Appl. 20(3) (2018), Paper No. 132, .10.1007/s11784-018-0611-9CrossRefGoogle Scholar
Fan, K., A minimax inequality and applications, in Inequalities (ed. Shisha, O.), , Volume III (Academic Press, New York, 1972).Google Scholar
Godwin, E. C., Alakoya, T. O., Mewomo, O. T. and Yao, J. -C., Relaxed inertial Tseng extragradient method for variational inequality and fixed point problems, Appl. Anal. (2022). doi: 10.1080/00036811.2022.2107913.Google Scholar
Godwin, E. C., Izuchukwu, C. and Mewomo, O. T., An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces, Boll. Unione Mat. Ital. 14(2) (2021), 379401.10.1007/s40574-020-00272-3CrossRefGoogle Scholar
Godwin, E. C., Izuchukwu, C. and Mewomo, O. T., Image restoration using a modified relaxed inertial method for generalized split feasibility problems, Math. Methods Appl. Sci. 46(5) (2023), 55215544.10.1002/mma.8849CrossRefGoogle Scholar
Godwin, E. C., Taiwo, A. and Mewomo, O. T., Iterative method for solving split common fixed point problem of asymptotically demicontractive mappings in Hilbert spaces, Numer. Algebra Control Optim. 13(2) (2023), 239257.10.3934/naco.2022005CrossRefGoogle Scholar
He, Z., The split equilibrium problem and its convergence algorithms, J. Inequal. Appl. 2012 (2012), . doi: 10.1186/1029-242X-2012-162.CrossRefGoogle Scholar
Hieu, D. V., Common solutions to pseudomonotone equilibrium problems, Bull. Iranian Math. Soc. 42 (2016), 12071219.Google Scholar
Hieu, D. V., Muu, L. D. and Anh, P. K., Parallel hybrid extragradient methods for pseudmonotone equilibrium problems and nonexpansive mappings, Numer. Algorithms 73 (2016), 197217.10.1007/s11075-015-0092-5CrossRefGoogle Scholar
Hieu, D. V. and , P. K., Quy, Accelerated hybrid methods for solving pseudomonotone equilibrium problems, Adv. Comput. Math. 46 (2020), 124.Google Scholar
Kassay, G., Reich, S. and Sabach, S., Iterative methods for solving systems of variational inequalities in reflexive Banach spaces, SIAM J. Optim. 21 (2011), 13191344.10.1137/110820002CrossRefGoogle Scholar
Kim, D. S., and Dinh, B. V., Parallel extragradient algorithms for multiple set split equilibrium problems in Hilbert spaces, Numer. Algorithms 77 (2018), 741761. doi: 10.1007/S11075-017-0338-5CrossRefGoogle Scholar
Kimura, Y. and Saejung, S., Strong convergence for a common fixed points of two different generalizations of cutter operators, Linear Nonlinear Anal. 1 (2015), 5365.Google Scholar
Kuo, L. W. and Sahu, D. R., Bregman distance and strong convergence of proximal-type algorithms, Abstr. Appl. Anal. 2013 (2013), .10.1155/2013/590519CrossRefGoogle Scholar
Ma, Z., Wang, L., and Cho, Y. J., Some results for split equality equilibrium problems in Banach spaces, Symmetry 11 (2019), . doi: 10.3390/sym11020194.CrossRefGoogle Scholar
Martin-Marquez, V., Reich, S. and Sabach, S., Bregman strongly nonexpansive operators in reflexive Banach spaces, J. Math. Anal. Appl. 400 (2013), 597614.10.1016/j.jmaa.2012.11.059CrossRefGoogle Scholar
Moudafi, A., Split monotone variational inclusions, J. Optim. Theory Appl. 150 (2011), 275283.10.1007/s10957-011-9814-6CrossRefGoogle Scholar
Moudafi, A., A second order differential proximal methods for equilibrium problems, J. Inequal. Pure Appl. Math. 2013 (2013), .Google Scholar
Ogbuisi, F. U. and Mewomo, O. T., Convergence analysis of common solution of certain nonlinear problems, Fixed Point Theory 19(1) (2018), 335358.10.24193/fpt-ro.2018.1.26CrossRefGoogle Scholar
Ogwo, G. N., Alakoya, T. O. and Mewomo, O. T., Iterative algorithm with self-adaptive step size for approximating the common solution of variational inequality and fixed point problems, Optimization 72(3) (2023), .10.1080/02331934.2021.1981897CrossRefGoogle Scholar
Ogwo, G. N., Izuchukwu, C. and Mewomo, O. T., Relaxed inertial methods for solving split variational inequality problems without product space formulation, Acta Math. Sci. Ser. B (Engl. Ed.) 42(5) (2022), 17011733.Google Scholar
Ogwo, G. N., Izuchukwu, C., Shehu, Y. and Mewomo, O. T., Convergence of relaxed inertial subgradient extragradient methods for quasimonotone variational inequality problems, J. Sci. Comput. 90(1) (2022), .10.1007/s10915-021-01670-1CrossRefGoogle Scholar
Owolabi, A. O. -E., Alakoya, T. O., Taiwo, A. and Mewomo, O. T., A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings, Numer. Algebra Control Optim. 12(2) (2022), 255278.10.3934/naco.2021004CrossRefGoogle Scholar
Reem, D., Reich, S. and De Pierro, A., Re-examination of Bregman functions and new properties of their divergences, Optimization 68 (2019), 279348.10.1080/02331934.2018.1543295CrossRefGoogle Scholar
Reich, S. and Sabach, S., A strong convergence theorem for a proximal-type algorithm in reflexive Banach space, J. Nonlinear Convex Anal. 10 (2009), 471485.Google Scholar
Reich, S. and Sabach, S., Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflelxive Banach spaces, Contemp. Mathematicians 568 (2012), 225240.10.1090/conm/568/11285CrossRefGoogle Scholar
Schöpfer, F., Schuster, T. and Louis, A. K., An iterative regularization method for solving the split feasibility problem in Banach spaces, Inverse Problems 24 (2008), .10.1088/0266-5611/24/5/055008CrossRefGoogle Scholar
Simons, S. and Reich, S., Fenchel duality, Fitzpatrick functions and the Kirszbraun extension theorem, Proc. Amer. Math. Soc. 133 (2005), 26572660.Google Scholar
Taiwo, A. and Mewomo, O. T., Inertial-viscosity-type algorithms for solving generalized equilibrium and fixed point problems in Hilbert spaces, Vietnam J. Math. 50(1) (2022), 125149.10.1007/s10013-021-00485-9CrossRefGoogle Scholar
Tiel, J. V., Convex Analysis: An Introductory Text (Wiley, New York, NY, 1984).Google Scholar
Uzor, V. A., Alakoya, T. O. and Mewomo, O. T., Strong convergence of a self-adaptive inertial Tseng’s extragradient method for pseudomonotone variational inequalities and fixed point problems, Open Math. 20 (2022), 234257.10.1515/math-2022-0030CrossRefGoogle Scholar
Uzor, V. A., Alakoya, T. O. and Mewomo, O. T., On split monotone variational inclusion problem with multiple output sets with fixed point constraints, Comput. Methods Appl. Math. (2022). doi: 10.1515/cmam-2022-0199.Google Scholar
Xu, Z. B. and Roach, G. F., Characteristics inequalities of uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl. 157(1) (1991), 189210.10.1016/0022-247X(91)90144-OCrossRefGoogle Scholar