Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T16:54:55.746Z Has data issue: false hasContentIssue false

Regularity of simple nuclear real C*-algebras under tracial conditions

Published online by Cambridge University Press:  30 April 2021

P. J. Stacey*
Affiliation:
Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria3086, Australia (p.stacey@latrobe.edu.au)

Abstract

The Toms–Winter conjecture is verified for those separable, unital, nuclear, infinite-dimensional real C*-algebras for which the complexification has a tracial state space with compact extreme boundary of finite covering dimension.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boersema, J. L., Ruiz, E. and Stacey, P. J., The classification of real purely infinite simple C*-algebras, Doc. Math. 16 (2011), 619655.Google Scholar
Castillejos, J., Evington, S., Tikuisis, A., White, S. and Winter, W., Nuclear dimension of simple C*-algebras. Preprint February 2019, ArXiv:1901.05853v2Google Scholar
Gardella, E. and Hirshberg, I., Strongly outer actions of amenable groups on ${\mathcal {Z}}$-stable C*-algebras. Preprint April 2019, ArXiv:1811.00447v2Google Scholar
Giordano, T., A classification of approximately finite real C*-algebras, J. Reine Angew. Math. 385 (1988), 161194.Google Scholar
Goodearl, K. R. and Handelman, D. E., Classification of ring and C*-algebra direct limits of finite-dimensional semisimple real algebras, Mem. Amer. Math. Soc. 69 (1987), 372.Google Scholar
Hayashi, T., A Kishimoto type theorem for antiautomorphisms with some applications, Internat. J. Math. 15(5) (2004), 487499.CrossRefGoogle Scholar
Hirshberg, I., Winter, W. and Zacharias, J., Rokhlin dimension and C*-dynamics, Comm. Math. Phys. 335(2) (2015), 637670.CrossRefGoogle Scholar
Ho, N. B., Amenability for real C*-algebras, Bull. Aust. Math. Soc. 77(3) (2008), 509514.CrossRefGoogle Scholar
Jiang, X. and Su, H., On a simple unital projectionless C*-algebra, Amer. J. Math. 121(2) (1999), 359413.Google Scholar
Kirchberg, E. and Rørdam, M., Central sequence C*-algebras and tensorial absorption of the Jiang-Su algebra, J. Reine Angew. Math. 695 (2014), 175214.Google Scholar
Kishimoto, A., Outer automorphisms and reduced crossed products of simple C*-algebras, Comm. Math. Phys. 81(3) (1981), 429435.CrossRefGoogle Scholar
Li, B., Real operator algebras, (River Edge, NJ, World Scientific Publishing Co. Inc., 2003).CrossRefGoogle Scholar
Loring, T. A. and Sørensen, A. P. W., Almost commuting self-adjoint matrices: The real and self-dual cases, Rev, Math. Phys. 28(7) (2016), 1650017, 39 p.Google Scholar
Matui, H. and Sato, Y., Strict comparison and ${\mathcal {Z}}$-absorption of nuclear C*-algebras, Acta Math. 209(1) (2012), 179196.10.1007/s11511-012-0084-4CrossRefGoogle Scholar
Matui, H. and Sato, Y., ${\mathcal {Z}}$-stability of crossed products by strongly outer actions II, Amer. J. Math. 136(6) (2014), 14411496.CrossRefGoogle Scholar
Phillips, N. C., Sørensen, A. P. W. and Thiel, H., Semiprojectivity with and without a group action, J. Funct. Anal. 268(4) (2015), 929973.CrossRefGoogle Scholar
Rørdam, M., The stable and the real rank of ${\mathcal {Z}}$-absorbing C*-algebras, Internat. J. Math. 15(10) (2004), 10651084.CrossRefGoogle Scholar
Sato, Y., Trace spaces of simple nuclear C*-algebras with finite-dimensional extreme boundary. Preprint Sep 2012, ArXiv:1209.3000v1Google Scholar
Sato, Y., Actions of amenable groups and crossed products of ${\mathcal {Z}}$-absorbing C*-algebras, Operator Algebras Math Phys., Adv. Stud. Pure Math., Volume 80 (Math. Soc., Japan, Tokyo, 2019), 189–210Google Scholar
Stacey, P. J., Real structures in direct limits of finite-dimensional C*-algebras, J. London Math. Soc. (2) 35 (2) (1987), 339352.CrossRefGoogle Scholar
Stacey, P. J., A real Jiang-Su algebra, Münster J. Math. 10(2) (2017), 383407.Google Scholar
Toms, A. S., White, S. and Winter, W., ${\mathcal {Z}}$-stability and finite-dimensional tracial boundaries, Int. Math. Res. Not. IMRN 10 (2015), 27022727.Google Scholar
Winter, W., Covering dimension for nuclear C*-algebras, J. Funct. Anal. 199(2) (2003), 535556.CrossRefGoogle Scholar
Winter, W., Covering dimension for nuclear C*-algebras, II, Trans. Amer. Math. Soc. 361(8) (2009), 41434167.CrossRefGoogle Scholar
Winter, W., Decomposition rank and ${\mathcal {Z}}$-stability, Invent. Math. 179(2) (2010), 229301.CrossRefGoogle Scholar
Winter, W., Nuclear dimension and ${\mathcal {Z}}$-stability of pure C*-algebras, Invent. Math. 187(2) (2012), 259342.CrossRefGoogle Scholar
Winter, W. and Zacharias, J., The nuclear dimension of C*-algebras, Adv. Math. 224(2) (2010), 461498.CrossRefGoogle Scholar