Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T06:05:27.106Z Has data issue: false hasContentIssue false

On the semiprimitivity of skew polynomial rings

Published online by Cambridge University Press:  20 January 2009

A. Moussavi
Affiliation:
Department of Pure Mathematics, University of Sheffield, Sheffield S3 7RH Department of Mathematics, Tarbiat Modarres University, P.O. Box 14155-4838, Tehran, Iran
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be a left Noetherian ring with the ascending chain condition on right annihilators, let α be a ring monomorphism of R and δ an α-derivation of R. We prove that, if R is semiprime or α-prime, then R[X;α, δ] is semiprimitive (and left Goldie), and that J(R[X;α]) equals N(R)[X;α].

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1993

References

REFERENCES

1.Amitsur, S. A., Radical of polynomial rings, Canad. J. Math. 8 (1956), 355361.CrossRefGoogle Scholar
2.Bedi, S. S. and Ram, J., Jacobson radical of skew polynomial rings and group rings, Israel J. Math. 35 (1980), 327338.CrossRefGoogle Scholar
3.Bell, A. D., When are all prime ideals in an Ore extension Goldie?, Comm. Algebra 13 (1985), 17431762.CrossRefGoogle Scholar
4.Bell, A. D., Goldie dimensions of prime factors of polynomial and skew polynomial rings, J. London Math. Soc. (2) 29 (1984), 418424.CrossRefGoogle Scholar
5.Cauchon, G. and Robson, J. C., Endomorphisms, derivations and polynomial rings, J. Algebra 53 (1978), 227238.CrossRefGoogle Scholar
6.Chatters, A. W. and Hajarnavis, C. R., Rings with chain conditions (Research Notes in Mathematics 44, Pitman, London, 1980).Google Scholar
7.Dean, C., Monomorphisms and Radicals of Noetherian rings, J. Algebra 99, (1986), 573576.CrossRefGoogle Scholar
8.El Ahmar, A., Anneaux des polynomes de Ore sur des anneaux de Jacobson, Rev. Roumaine Math. Pures Appl. 26 (1981), 12771286.Google Scholar
9.Goldie, A. W. and Michler, G., Ore extensions and polycyclic group rings, J. London Math. Soc. (2) 9 (1974), 337345.CrossRefGoogle Scholar
10.Herstein, I. N., Topics in Ring theory (The University of Chicago Press, 1969).Google Scholar
11.Irving, R. S., Prime ideals of Ore extensions over commutative rings, J. Algebra 56 (1979), 315342.CrossRefGoogle Scholar
12.Jategaonkar, A. V., Skew polynomial rings over orders in Artinian rings, J. Algebra 21 (1972), 5159.CrossRefGoogle Scholar
13.Jordan, C. R. and Jordan, D. A., A note on semiprimitivity of Ore extensions, Comm. Algebra 4 (1976), 647656.CrossRefGoogle Scholar
14.Jordan, D. A., Bijective extensions of injective ring endomorphisms, J. London Math. Soc. (2) 25 (1982), 435448.CrossRefGoogle Scholar
15.Lanski, C., Nil subrings of Goldie rings are nilpotent, Canad. J. Math. 21 (1969), 904907.CrossRefGoogle Scholar
16.McConnell, J. C. and Robson, J. C., Non-commutative Noetherian rings (John Wiley & Sons, Chichester, 1987).Google Scholar
17.Pearson, K. R. and Stephenson, W., A skew polynomial ring over a Jacobson ring need not be a Jacobson ring, Comm. Algebra 5 (1977), 783794.CrossRefGoogle Scholar
18.Ram, J., On the semiprimitivity of skew polynomial rings, Proc. Amer. Math. Soc. (3) 90 (1984), 347351.CrossRefGoogle Scholar