Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T23:09:08.144Z Has data issue: false hasContentIssue false

On the existence of global weak solutions to an integrable two-component Camassa–Holm shallow-water system

Published online by Cambridge University Press:  28 June 2013

Chunxia Guan
Affiliation:
Institut Franco-Chinois de L'Energie Nucléaire, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China (guanchunxia123@163.com)
Zhaoyang Yin
Affiliation:
Department of Mathematics, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China (mcsyzy@mail.sysu.edu.cn)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we investigate the existence of global weak solutions to an integrable two-component Camassa–Holm shallow-water system, provided the initial data u0(x) and ρ0(x) have end states u± and ρ±, respectively. By perturbing the Cauchy problem of the system around rarefaction waves of the well-known Burgers equation, we obtain a global weak solution for the system under the assumptions u− ≤ u+ and ρ− ≤ ρ+.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2013 

References

1.Bressan, A. and Constantin, A., Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Analysis 183 (2007), 215239.CrossRefGoogle Scholar
2.Bressan, A. and Constantin, A., Global dissipative solutions of the Camassa–Holm equation, Analysis Applic. 5 (2007), 127.CrossRefGoogle Scholar
3.Camassa, R. and Holm, D., An integrable shallow-water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 16611664.CrossRefGoogle ScholarPubMed
4.Chen, M. and Liu, Y., Wave breaking and global existence for a generalized two-component Camassa–Holm system, Int. Math. Res. Not. 2011 (2011), 13811416.Google Scholar
5.Chen, M., Liu, S.-Q. and Zhang, Y., A two-component generalization of the Camassa–Holm equation and its solutions, Lett. Math. Phys. 75 (2006), 115.CrossRefGoogle Scholar
6.Constantin, A., The Hamiltonian structure of the Camassa–Holm equation, Expo. Math. 15 (1997), 5385.Google Scholar
7.Constantin, A., Existence of permanent and breaking waves for a shallow-water equation: a geometric approach, Annales Inst. Fourier 50 (2000), 321362.CrossRefGoogle Scholar
8.Constantin, A. and Escher, J., Wave breaking for nonlinear nonlocal shallow-water equations, Acta Math. 181 (1998), 229243.CrossRefGoogle Scholar
9.Constantin, A. and Escher, J., Global existence and blow-up for a shallow-water equation, Annali Scuola Norm. Sup. Pisa 26 (1998), 303328.Google Scholar
10.Constantin, A. and Escher, J., Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation, Commun. Pure Appl. Math. 51 (1998), 475504.3.0.CO;2-5>CrossRefGoogle Scholar
11.Constantin, A. and Escher, J., On the blow-up rate and the blow-up of breaking waves for a shallow-water equation, Math. Z. 233 (2000), 7591.CrossRefGoogle Scholar
12.Constantin, A. and Ivanov, R., On an integrable two-component Camassa–Holm shallow-water system, Phys. Lett. A 372 (2008), 71297132.CrossRefGoogle Scholar
13.Constantin, A. and Johnson, R. S., Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam. Res. 40 (2008), 175211.CrossRefGoogle Scholar
14.Constantin, A. and Kolev, B., Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv. 78 (2003), 787804.CrossRefGoogle Scholar
15.Constantin, A. and Lannes, D., The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Arch. Ration. Mech. Analysis 192 (2009), 165186.CrossRefGoogle Scholar
16.Constantin, A. and Molinet, L., Global weak solutions for a shallow-water equation, Commun. Math. Phys. 211 (2000), 4561.CrossRefGoogle Scholar
17.Constantin, A. and Strauss, W. A., Stability of a class of solitary waves in compressible elastic rods, Phys. Lett. A 270 (2000), 140148.CrossRefGoogle Scholar
18.Dai, H. H., Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin rod, Acta Mech. 127 (1998), 193207.CrossRefGoogle Scholar
19.Danchin, R., A few remarks on the Camassa–Holm equation, Diff. Integ. Eqns 14 (2001), 953988.Google Scholar
20.DiPerna, R. J. and Lions, P. L., Ordinary differential equations, transport theory and Sobolev space, Invent. Math. 98 (1989), 511547.CrossRefGoogle Scholar
21.Dullin, H. R., Gottwald, G. A. and Holm, D. D., An integrable shallow-water equation with linear and nonlinear dispersion, Phys. Rev. Lett. 87 (2001), 45014504.CrossRefGoogle ScholarPubMed
22.Escher, J. and Yin, Z., Initial boundary value problems of the Camassa–Holm equation, Commun. PDEs 33 (2008), 377395.CrossRefGoogle Scholar
23.Escher, J. and Yin, Z., Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Analysis 256 (2009), 479508.CrossRefGoogle Scholar
24.Escher, J., Kohlmann, M. and Lenells, J., The geometry of the two-component Camassa–Holm and Degasperis–Procesi equations, J. Geom. Phys. 61 (2011), 436452.CrossRefGoogle Scholar
25.Escher, J., Lechtenfeld, O. and Yin, Z., Well-posedness and blow-up phenomena for the two-component Camassa–Holm equation, Discrete Contin. Dynam. Syst. A 19 (2007), 493513.CrossRefGoogle Scholar
26.Falqui, G., On a Camassa–Holm type equation with two dependent variables, J. Phys. A 39 (2006), 327342.Google Scholar
27.Fokas, A. and Fuchssteiner, B., Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D 4 (1981), 4766.Google Scholar
28.Guan, C. and Yin, Z., Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow-water system, J. Diff. Eqns 248 (2010), 20032014.CrossRefGoogle Scholar
29.Guan, C. and Yin, Z., Global weak solutions for a two-component Camassa–Holm shallow-water system, J. Funct. Analysis 260 (2011), 11321154.CrossRefGoogle Scholar
30.Henry, D., Infinite propagation speed for a two component Camassa–Holm equation, Discrete Contin. Dynam. Syst. B 12 (2009), 597606.CrossRefGoogle Scholar
31.Holm, D. D. and Ivanov, R., Two-component CH system: inverse scattering, peakons and geometry, Inv. Probl. 27 (2011), 045013.CrossRefGoogle Scholar
32.Holm, D. D. and Tronci, C., Geodesic Vlasov equations and their integrable moment closures, J. Geom. Mech. 1 (2009), 181208.CrossRefGoogle Scholar
33.Holm, D. D., Trouvé, A. and Younes, L., The Euler–Poincaré theory of metamorphosis, Q. Appl. Math. 67 (2009), 661685.CrossRefGoogle Scholar
34.Ionescu-Krus, D., Variational derivation of the Camassa–Holm shallow-water equation, J. Nonlin. Math. Phys. 14 (2007), 303312.Google Scholar
35.Ivanov, R. I., Extended Camassa–Holm hierarchy and conserved quantities, Z. Naturf. A 61 (2006), 133138.CrossRefGoogle Scholar
36.Ivanov, R. I., Water waves and integrability, Phil. Trans. R. Soc. Lond. A 365 (2007), 22672280.Google ScholarPubMed
37.Ivanov, R. I., Two component integrable systems modelling shallow-water waves: the constant vorticity case, Wave Motion 46 (2009), 389396.CrossRefGoogle Scholar
38.Johnson, R. S., Camassa–Holm, Korteweg–de Vries and related models for water waves, J. Fluid Mech. 457 (2002), 6382.CrossRefGoogle Scholar
39.Kolev, B., Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow-water equations, Phil. Trans. R. Soc. Lond. A 365 (2007), 23332357.Google ScholarPubMed
40.Lakshmanan, M., Integrable nonlinear wave equations and possible connections to tsunami dynamics, in Tsunami and nonlinear waves, pp. 3149 (Springer, 2007).CrossRefGoogle Scholar
41.Li, Y. and Olver, P., Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Diff. Eqns 162 (2000), 2763.CrossRefGoogle Scholar
42.Lions, P. L., Mathematical topics in fluid mechanics, volume I: incompressible models, Oxford Lecture Series in Mathematics and Applications, Volume 3 (Oxford University Press, 1996).Google Scholar
43.Olver, P. and Rosenau, P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E 53 (1996), 19001906.Google ScholarPubMed
44.Popowicz, Z., A two-component or N = 2 supersymmetric Camassa–Holm equation, Phys. Lett. A 354 (2006), 110114.CrossRefGoogle Scholar
45.Rodriguez-Blanco, G., On the Cauchy problem for the Camassa–Holm equation, Nonlin. Analysis 46 (2001), 309327.CrossRefGoogle Scholar
46.Shabat, A. and Alonso, L. Martínez, On the prolongation of a hierarchy of hydrodynamic chains, In New trends in integrability and partial solvability (ed. A. B. Shabat et al.), NATO Science Series, Volume 132, pp. 263280 (Kluwer Academic, Dordrecht, 2004).CrossRefGoogle Scholar
47.Simon, J., Compact sets in the space Lp(0, T; B), Annali Mat. Pura Appl. 146 (1987), 6596.CrossRefGoogle Scholar
48.Xin, Z. and Zhang, P., On the weak solutions to a shallow-water equation, Commun. Pure Appl. Math. 53 (2000), 14111433.3.0.CO;2-5>CrossRefGoogle Scholar
49.Yin, Z., Well-posedness, blow-up, and global existence for an integrable shallow-water equation, Discrete Contin. Dynam. Syst. A 11 (2004), 393411.CrossRefGoogle Scholar
50.Zhu, C., Asymptotic behavior of solutions for p-system with relaxation, J. Diff. Eqns 180 (2002), 273306.CrossRefGoogle Scholar