Published online by Cambridge University Press: 20 January 2009
Let G be a group and let Aut(G) be its automorphism group. It is notorious that the properties of Aut (G) do not relate well to the properties of G, perhaps the only twogeneral results being that if G has a trivial centre then the same is true of Aut (G) [2, p.89] and Baumslag's theorem that if G is finitely generated and residually finite then Aut (G) is also residually finite [1, Theorem 1, p. 117]. In the paper we shall attempt tofind analogues of these results for therelationship between the properties of R(G), the group ring of G over a ring R, and the properties of Aut R(G), the automorphism of R(G). We prove that if R(G) has a trivial centre then Aut R(G) has a trivial centre. We establish the analogue, Theorem 2.3, of Baumslag's theorem by ring-theoretic methods; our original proof used properties of group rings, the present simplified proof we owe to the referee. As an example we calculate Aut ℤ(G) in the case that G is the direct product of two cyclic groups, one of infinite order and the other of order 5. This calculation will, it is hoped, give some indication of the difficulties in determining automorphisms of the group ring of an infinite group.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.