Hostname: page-component-cb9f654ff-hn9fh Total loading time: 0 Render date: 2025-09-08T13:25:58.987Z Has data issue: false hasContentIssue false

On coefficient modules of arbitrary modules

Published online by Cambridge University Press:  29 August 2025

Pedro Lima
Affiliation:
Departamento de Matemática, CCET - Centro de Ciências Exatas e Tecnologias, UFMA - Universidade Federal do Maranhão, Brazil (apoliano108@gmail.com)
Marcela Ferrari
Affiliation:
Departamento de Matemática, CCE - Centro de Ciências Exatas, UEM - Universidade Estadual de Maringá, Brazil
Victor Jorge Pérez
Affiliation:
Departamento de Matemática, ICMC - Instituto de Ciências da Computação e Matemática, USP - Universidade de São Paulo, Brazil

Abstract

Let $(R, \mathfrak{m})$ be a d-dimensional Noetherian local ring that is formally equidimensional, and let M be an arbitrary R-submodule of the free module $F = R^p$ with an analytic spread $s:=s(M)$. In this work, inspired by Herzog-Puthenpurakal-Verma in [10], we show the existence of a unique largest R-module Mk with $\ell_R(M_{k}/M) \lt \infty$ and $M\subseteq M_{s}\subseteq\cdots\subseteq M_{1}\subseteq M_{0}\subseteq q(M),$ such that $\deg(P_{M_{k}/M}(n)) \lt s-k,$ where q(M) is the relative integral closure of $M,$ defined by $q(M):=\overline{M}\cap M^{sat},$ where $M^{sat}=\cup_{n\geqslant 1}(M:_F\mathfrak{m}^n)$ is the saturation of M. We also provide a structure theorem for these modules. Furthermore, we establish the existence of coefficient modules between $I(M)M$ and M, where I(M) denotes the 0th Fitting ideal of $F/M$, and discuss their structural properties. Finally, we present some applications and discuss some properties.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

This work was partially supported by CNPq-Brazil-Grants 309316/2011-1, and FAPESP Grant 2012/20304-1.

References

Amao, J. O., On a certain Hilbert polynomial, J. London Math. Soc. 1976. 14(1) 1320.10.1112/jlms/s2-14.1.13CrossRefGoogle Scholar
Bruns, W. and Herzog, J., Cohen-Macaulay Rings Cambridge Studies in Advanced Mathematics, Volume 39, (Cambridge University Press, Cambridge, 1993).Google Scholar
Buchsbaum, D. and Rim, D., A generalized Koszul complex II. Depth and multiplicity, Trans. Am. Math. Soc. 111(2) (1964), 197224.10.1090/S0002-9947-1964-0159860-7CrossRefGoogle Scholar
Callejas-Bedregal, R., Pérez, V. H. J. and Ferrari, M. D., On coefficient ideals, Math. Proc. Camb. Philos. Soc. 167(2) (2019), 285294.10.1017/S0305004118000324CrossRefGoogle Scholar
Ciupercă, C., First coefficient ideals and the S 2-ification of a Rees algebra, J. Algebra 242(2) (2001), 782794.10.1006/jabr.2001.8835CrossRefGoogle Scholar
Endo, N., On Ratliff-Rush closure of modules, Math. Scand. 126(2) (2020), 170188.10.7146/math.scand.a-119672CrossRefGoogle Scholar
Heinzer, W., Johnston, B. and Lantz, D., First coefficient domains and ideals of reduction number one, Comm. Algebra 21(10) (1993), 37973827.10.1080/00927879308824766CrossRefGoogle Scholar
Heinzer, W., Johnston, B., Lantz, D. and Shah, K., Coefficient ideals in and blowups of a commutative Noetherian domain, J. Algebra 162(2) (1993), 355391.10.1006/jabr.1993.1261CrossRefGoogle Scholar
Heinzer, W. and Lantz, D., Coefficient and stable ideals in polynomial rings. In Factorization in Integral domains Lecture Notes in Pure and Appl. Math., (Volume 189, pp. 359370 1997).Google Scholar
Herzog, J., Puthenpurakal, T. and Verma, J. K., Hilbert polynomials and powers of ideals, Math. Proc. Camb. Phil. Soc. 145(3) (2008), 623642.10.1017/S0305004108001540CrossRefGoogle Scholar
Huckaba, S. and Marley, T., Hilbert coefficients and depths of associated graded rings, J. London Math. Soc. 56(1) (1997), 6476.10.1112/S0024610797005206CrossRefGoogle Scholar
Huneke, C. and Swanson, I, Integral Closure of ideals, Rings and modules. London Math. Soc. Lecture Note, (Cambridge University Press, 2006).Google Scholar
Jorge-Pérez, V. H. and Ferrari, M. D., Coefficient Modules and Rees Polynomials of Arbitrary Modules, International Journal of Algebra 6(9–12) (2012), 447455.Google Scholar
Jorge-Pérez, V. H. and Ferrari, M. D., Coefficient Modules and Ratliff-Rush Closures, Comm. Algebra 51(8): (2023), 34973509.10.1080/00927872.2023.2185075CrossRefGoogle Scholar
Jung, C. L., Ratliff-Rush closures and Coefficients modules, J. Algebra 201(2) (1998), 584603.Google Scholar
Katz, D., Reduction criteria for modules, Comm. Algebra 23(12): (1995), 45434548.10.1080/00927879508825485CrossRefGoogle Scholar
Katz, D. and Kodiyalam, V., Symmetric powers of complete modules over a two dimensional regular local ring, Trans. Amer. Math. Soc. 349(2) (1997), 747762.10.1090/S0002-9947-97-01819-9CrossRefGoogle Scholar
Kleiman, S. and Thorup, A., A geometric theory of the Buchsbaum-Rim multiplicity, J. Algebra 167(1) (1994), 168231.10.1006/jabr.1994.1182CrossRefGoogle Scholar
Lima, P. and Pérez, V. H., Coefficient ideals of the fiber cone, Bull. Sci. Math. 180(1) (2022), 103191.Google Scholar
Northcott, D. G. and Rees, D., Reduction of ideals in local rings, Proc. Cambridge Phil. Soc. 50(1) (1954), 145158.10.1017/S0305004100029194CrossRefGoogle Scholar
Polini, C., Ulrich, B. and Virtulli, M. A., The core of zerodimensional monomial ideals, Adv. Math. 211(1): (2007), 7293.10.1016/j.aim.2006.07.020CrossRefGoogle Scholar
Rees, D., A-transforms of local rings and a theorem on multiplicities of ideals, Cambridge Philos. Soc. 57(1) (1961), 817.10.1017/S0305004100034800CrossRefGoogle Scholar
Rees, D., Amao’s theorem and reduction criteria, J. London Math. Soc. 32(3) (1985), 404410.10.1112/jlms/s2-32.3.404CrossRefGoogle Scholar
Roberts, P., Multiplicities and Chern classes in local algebra. Cambridge Tracts Math., Volume 133, (Cambridge Univ. Press, 1998).Google Scholar
Rossi, M. E. and Valla, G., On a conjecture of J. Sally, Comm. Algebra 24(13) (1996), 42494261.10.1080/00927879608825812CrossRefGoogle Scholar
Rossi, M. E. and Valla, G., The Hilbert function of the Ratliff-Rush filtration, J. Pure Appl. Algebra 201(1–3) (2005), 13.10.1016/j.jpaa.2004.12.042CrossRefGoogle Scholar
Shah, K., Coefficient ideals, Trans. Math. Soc. 327(1) (1991), 373384.10.1090/S0002-9947-1991-1013338-3CrossRefGoogle Scholar
Simis, A., Ulrich, B. and Vasconcelos, W., Rees algebras of modules, Proc. London Math. Soc. 87(3) (2003), 610646.10.1112/S0024611502014144CrossRefGoogle Scholar