Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T17:38:48.932Z Has data issue: false hasContentIssue false

THE MAXIMAL ORDER PROPERTY FOR QUANTUM DETERMINANTAL RINGS

Published online by Cambridge University Press:  10 December 2003

T. H. Lenagan
Affiliation:
School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK (tom@maths.ed.ac.uk)
L. Rigal
Affiliation:
Université Jean Monnet (Saint-Étienne), Faculté des Sciences et Techniques, Département de Mathématiques, 23 rue du Docteur Paul Michelon, 42023 Saint-Étienne Cédex 2, France (Laurent.Rigal@univ-st-etienne.fr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We develop a method of reducing the size of quantum minors in the algebra of quantum matrices $\mathcal{O}_q(M_n)$. We use the method to show that the quantum determinantal factor rings of $\mathcal{O}_q(M_n)c$ are maximal orders, for $q$ an element of $\mathbb{C}$ transcendental over $\mathbb{Q}$.

AMS 2000 Mathematics subject classification: Primary 16P40; 16W35; 20G42

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2003