Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T02:36:59.388Z Has data issue: false hasContentIssue false

A higher category approach to twisted actions on c* -algebras

Published online by Cambridge University Press:  30 August 2012

Alcides Buss
Affiliation:
Departamento de Matemática, Universidade Federal de Santa Catarina, 88.040-900 Florianópolis-SC, Brazil (alcides@mtm.ufsc.br)
Ralf Meyer
Affiliation:
Mathematisches Institut, Georg-August-Universität Göttingen, Bunsenstraße 3–5, 37073 Göttingen, Germany (rameyer@uni-math.gwdg.de) Courant Research Centre ‘Higher Order Structures’, Georg-August-Universität Göttingen, Bunsenstraße 3–5, 37073 Göttingen, Germany (zhu@uni-math.gwdg.de)
Chenchang Zhu
Affiliation:
Courant Research Centre ‘Higher Order Structures’, Georg-August-Universität Göttingen, Bunsenstraße 3–5, 37073 Göttingen, Germany (zhu@uni-math.gwdg.de)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

C*-algebras form a 2-category with *-homomorphisms or correspondences as morphisms and unitary intertwiners as 2-morphisms. We use this structure to define weak actions of 2-categories, weakly equivariant maps between weak actions and modifications between weakly equivariant maps. In the group case, we identify the resulting notions with known ones, including Busby–Smith twisted actions and the equivalence of such actions, covariant representations and saturated Fell bundles. For 2-groups, weak actions combine twists in the sense of Green, and Busby and Smith.

The Packer–Raeburn Stabilization Trick implies that all Busby–Smith twisted group actions of locally compact groups are Morita equivalent to classical group actions. We generalize this to actions of strict 2-groupoids.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2013

References

1.Abadie, B., Eilers, S. and Exel, R., Morita equivalence for crossed products by Hilbert C*-bimodules, Trans. Am. Math. Soc. 350(8) (1998), 30433054.CrossRefGoogle Scholar
2.Baez, J. C., An introduction to n-categories, in Category theory and computer science, Lecture Notes in Computer Science, Volume 1290, pp. 133 (Springer, 1997).CrossRefGoogle Scholar
3.Baez, J. C. and Dolan, J., Categorification, in Higher category theory, Contemporary Mathematics, Volume 230, pp. 136 (American Mathematical Society, Providence, RI, 1998).CrossRefGoogle Scholar
4.Bénabou, J., Introduction to bicategories, in Reports of the Midwest Category Seminar, pp. 177 (Springer, 1967).CrossRefGoogle Scholar
5.Brouwer, R. M., A bicategorical approach to Morita equivalence for von Neumann algebras, J. Math. Phys. 44(5) (2003), 22062214.CrossRefGoogle Scholar
6.Busby, R. C. and Smith, H. A., Representations of twisted group algebras, Trans. Am. Math. Soc. 149 (1970), 503537.CrossRefGoogle Scholar
7.Buss, A., Meyer, R. and Zhu, C., Non-Hausdorff symmetries of C*-algebras, Math. Annalen 352(1) (2012), 7397.CrossRefGoogle Scholar
8.Echterhoff, S., Morita equivalent twisted actions and a new version of the Packer–Raeburn stabilization trick, J. Lond. Math. Soc. (2) 50(1) (1994), 170186.CrossRefGoogle Scholar
9.Echterhoff, S., Kaliszewski, S. P., Quigg, J. and Raeburn, I., A categorical approach to imprimitivity theorems for C* -dynamical systems, Memoirs of the American Mathematical Society, Volume 180 (American Mathematical Society, Providence, RI, 2006).Google Scholar
10.Exel, R., Twisted partial actions: a classification of regular C* -algebraic bundles, Proc. Lond. Math. Soc. 74(2) (1997), 417443.CrossRefGoogle Scholar
11.Exel, R., Partial actions of groups and actions of inverse semigroups, Proc. Am. Math. Soc. 126(12) (1998), 34813494.CrossRefGoogle Scholar
12.Fell, J. M. G. and Doran, R. S., Representations of *-algebras, locally compact groups, and Banach * -algebraic bundles, Volume 1, Pure and Applied Mathematics, Volume 125 (Academic Press, Boston, MA, 1988).Google Scholar
13.Green, P., The local structure of twisted covariance algebras, Acta Math. 140(3) (1978), 191250.CrossRefGoogle Scholar
14.Hilsum, M. and Skandalis, G., Morphismes K-orientés d'espaces de feuilles et fonctorialitéenthéorie de Kasparov (d'après une conjecture d'A. Connes), Annales Scient. Éc. Norm. Sup. 20(3) (1987), 325390 (in French).CrossRefGoogle Scholar
15.Kaliszewski, S. P., A note on Morita equivalence of twisted C*-dynamical systems, Proc. Am. Math. Soc. 123(6) (1995), 17371740.CrossRefGoogle Scholar
16.Landsman, N. P., Bicategories of operator algebras and Poisson manifolds, in Mathematical physics in mathematics and physics, Fields Institute Communications, Volume 30, pp. 271286 (American Mathematical Society, Providence, RI, 2001).Google Scholar
17.Leinster, T., Basic bicategories, eprint (arXiv:math/9810017; 1998).Google Scholar
18.Lane, S. Mac, Natural associativity and commutativity, Rice Univ. Studies 49(4) (1963), 2846.Google Scholar
19.Mingo, J. A. and Phillips, W. J., Equivariant triviality theorems for Hilbert C*-modules, Proc. Am. Math. Soc. 91(2) (1984), 225230.Google Scholar
20.Muhly, P. S., Bundles over groupoids, in Groupoids in analysis, geometry, and physics, Contemporary Mathematics, Volume 282, pp. 6782 (American Mathematical Society, Providence, RI, 2001).CrossRefGoogle Scholar
21.Muhly, P. S. and Williams, D. P., Equivalence and disintegration theorems for Fell bundles and their C*-algebras, Dissertationes Math. 456 (2008), 157.CrossRefGoogle Scholar
22.Raeburn, I., Sims, A. and Williams, D. P., Twisted actions and obstructions in group cohomology, in C*-Algebras, pp. 161181 (Springer, 2000).CrossRefGoogle Scholar
23.Yamagami, S., On primitive ideal spaces of C*-algebras over certain locally compact groupoids, Mappings of Operator Algebras, Progress in Mathematics, Volume 84, pp. 199204 (Birkhäuser, Boston, MA, 1990).Google Scholar