Published online by Cambridge University Press: 05 June 2015
Given a finite field of q elements, we consider a trajectory of the map associated with a polynomial ]. Using bounds of character sums, under some mild condition on f, we show that for an appropriate constant C > 0 no N ⩾ Cq½ distinct consecutive elements of such a trajectory are contained in a small subgroup of , improving the trivial lower bound . Using a different technique, we also obtain a similar result for very small values of N. These results are multiplicative analogues of several recently obtained bounds on the length of intervals containing N distinct consecutive elements of such a trajectory.