Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T07:03:41.545Z Has data issue: false hasContentIssue false

Generalized oscillatory integrals and Fourier integral operators

Published online by Cambridge University Press:  28 May 2009

Claudia Garetto
Affiliation:
Institut für Grundlagen der Bauingenieurwissenschaften, Leopold-Franzens-Universität Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria; Email: (claudia@mat1.uibk.ac.at, michael.oberguggenberger@uibk.ac.at)
Günther Hörmann
Affiliation:
Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, 1090 Wien, Austria; Email: (guenther.hoermann@univie.ac.at)
Michael Oberguggenberger
Affiliation:
Institut für Grundlagen der Bauingenieurwissenschaften, Leopold-Franzens-Universität Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria; Email: (claudia@mat1.uibk.ac.at, michael.oberguggenberger@uibk.ac.at)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, a theory is developed of generalized oscillatory integrals (OIs) whose phase functions and amplitudes may be generalized functions of Colombeau type. Based on this, generalized Fourier integral operators (FIOs) acting on Colombeau algebras are defined. This is motivated by the need for a general framework for partial differential operators with non-smooth coefficients and distribution dataffi The mapping properties of these FIOs are studied, as is microlocal Colombeau regularity for OIs and the influence of the FIO action on generalized wavefront sets.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2009