Published online by Cambridge University Press: 20 January 2009
In 1948 P. Lévy formulated the following theorem: If U is an open subset of the complex plane and f:U → ℂ is a nonconstant analytic function, then f maps a 2-dimensional Brownian motion Bt (up to the exit time from U) into a time changed 2-dimensional Brownian motion. A rigorous proof of this result first appeared in McKean [22]. This theorem has been used by many authors to solve problems about analytic functions by reducing them to problems about Brownian motion where the arguments are often more transparent. The survey paper [8] is a good reference for some of these applications. Lévy's theorem has been generalized, first by Bernard, Campbell, and Davie [5], and subsequently by Csink and Øksendal [7]. In Section 1 of this note we use these generalizations of Lévy's theorem to extend some results about BMO functions in the unit disc to harmonic morphisms in ℝn to holomorphic functions in ℂn and to analytic functions on Riemann surfaces. In Section 2, we characterize the domains in ℝn which have the property that the expected exit time of elliptic diffusions is uniformly bounded as a function of the starting point. This extends a result of Hayman and Pommerenke [15], and Stegenga [24] about BMO domains in the complex plane.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.