Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T03:04:01.715Z Has data issue: false hasContentIssue false

The Darboux problem involving the distributional Henstock–Kurzweil integral

Published online by Cambridge University Press:  04 January 2012

Yueping Lu
Affiliation:
Department of Mathematics, Hohai University, Nanjing 210098, People's Republic of China (lyp19841122@yahoo.cn; yegj@hhu.edu.cn)
Guoju Ye
Affiliation:
Department of Mathematics, Hohai University, Nanjing 210098, People's Republic of China (lyp19841122@yahoo.cn; yegj@hhu.edu.cn)
Ying Wang
Affiliation:
Department of Mathematics, Hohai University, Nanjing 210098, People's Republic of China (lyp19841122@yahoo.cn; yegj@hhu.edu.cn)
Wei Liu
Affiliation:
Department of Mathematics, Hohai University, Nanjing 210098, People's Republic of China (lyp19841122@yahoo.cn; yegj@hhu.edu.cn)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, using the Schauder Fixed Point Theorem and the Vidossich Theorem, we study the existence of solutions and the structure of the set of solutions of the Darboux problem involving the distributional Henstock–Kurzweil integral. The two theorems presented in this paper are extensions of the previous results of Deblasi and Myjak and of Bugajewski and Szufla.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2011

References

1.Alexiewicz, A. and Orlicz, W., Some remarks on the existence of solutions of the hyperbolic equation, Studia Math. 15 (1956), 156160.CrossRefGoogle Scholar
2.Ang, D. D., Schmitt, K. and Vy, L. K., A multidimensional analogue of the Denjoy–Perron–Henstock–Kurzweil integral, Bull. Belg. Math. Soc. 4 (1997), 355371.Google Scholar
3.Aronszajn, N., Le correspondant topologique de l'unicité dans la theorié des équations différentielles, Annals Math. 43 (1942), 730748.CrossRefGoogle Scholar
4.Bugajewski, D. and Szufla, S., On the Aronszajn property for differential equations and the Denjoy integral, Comment. Math. Prace Mat. 35 (1995), 6169.Google Scholar
5.Celidze, V. G. and Dzvarseisvili, A. G., The theory of the Denjoy integral and some applications (World Scientific, Singapore, 1989).CrossRefGoogle Scholar
6.Cichoń, M. and Kubiaczyk, I., Knerser-type theorem for the Darboux problem in Banach spaces, Commentat. Math. Univ. Carolinae 42 (2001), 267279.Google Scholar
7.Deblasi, F. and Myjak, J., On the structure of the set of solutions of the Darboux problem for hyperbolic equations, Proc. Edinb. Math. Soc. 29 (1986), 714.CrossRefGoogle Scholar
8.Górniewicz, L. and Pruszko, T., On the set of solutions of the Darboux problem for some hyperbolic equations, Bull. Acad. Polon. Sci. Math. 28 (1980), 279286.Google Scholar
9.Lee, P. Y., Lanzhou lectures on Henstock integration (World Scientific, Singapore, 1989).Google Scholar
10.Mawhin, J., Nonstandard analysis and generalized Riemann integrals, Časopis Pěst. Mat. 111 (1986), 3447.CrossRefGoogle Scholar
11.Mawhin, J. and Pfeffer, W. F., Hake's property of a multidimensional generalized Riemann integral, Czech. Math. J. 40 (1990), 690694.CrossRefGoogle Scholar
12.Schechter, M., An introduction to nonlinear analysis (Cambridge University Press, 2004).Google Scholar
13.Talvila, E., The distributional Denjoy integral, Real Analysis Exchange 33 (2008), 5182.CrossRefGoogle Scholar
14.Vidossich, G., A fixed-point theorem for funtion spaces, J. Math. Analysis Applic. 36 (1971), 581587.CrossRefGoogle Scholar
15.Schwabik, Š. and Ye, G., Topics in Banach space integration (World Scientific, Singapore, 2005).CrossRefGoogle Scholar
16.Ye, G., On the Henstock–Kurzweil–Dunford and Kurzweil–Henstock–Pettis integrals, Rocky Mt. J. Math. 39 (2009), 12331244.Google Scholar
17.Ye, G. and Schwabik, Š., The McShane integral and the Pettis integral of Banach spacevalued functions defined on ℝm, Illinois J. Math. 46 (2002), 11251144.Google Scholar