Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
It is shown that if G is a group and Aut G is a countable periodic CC-group then Aut G is FC.
1.Alcazar, J. and Otal, J., Sylow subgroups of groups with Černikov conjugacy classes, J. Algebra110 (1987), 507–513.CrossRefGoogle Scholar
2
2.Dixon, M. R. and Evans, M. J., Periodic divisible-by-finite automorphism groups are Finite, J. Algebra137 (1991), 416–424.CrossRefGoogle Scholar
3
3.Franciosi, S. and De Giovanni, F., A note on groups with countable automorphism groups, Arch. Math.47 (1986), 12–16.CrossRefGoogle Scholar
4
4.Francosi, S., de Giovanni, F. and Tomkinson, M. J., Groups with Černikov conjugacy classes, J. Austral. Math. Soc. Ser. A50 (1991), 1–14.CrossRefGoogle Scholar
5
5.Menegazzo, F. and Stonehewer, S. E., On the automorphism group of a nilpotent p-group, J. London Math. Soc. (2)31(1985), 272–276.CrossRefGoogle Scholar
6
6.Otal, J., Peña, J. M. and Tomkinson, M. J., Locally inner automorphisms of CC-groups, J. Algebra141 (1991), 382–398.CrossRefGoogle Scholar
7
7.Pettet, M. R., Locally finite groups as automorphism groups, Arch. Math.48 (1987), 1–9.CrossRefGoogle Scholar
8
8.Pettet, M. R., Almost-nilpotent periodic groups as automorphism groups, Quart. J. Math. Oxford (2)41 (1990), 93–108.CrossRefGoogle Scholar
9
9.Robinson, D. J. S., Infinite torsion groups as automorphism groups, Quart. J. Math. Oxford (2)30 (1979), 351–364.CrossRefGoogle Scholar
10
10.Robinson, D. J. S., Finiteness Conditions and Generalized Soluble Groups, vols. I and II (Springer, Berlin-Heidelberg-New York, 1972).Google Scholar