Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T21:30:07.696Z Has data issue: false hasContentIssue false

Automorphisms of normal transformation semigroups

Published online by Cambridge University Press:  20 January 2009

Inessa Levi
Affiliation:
Department of MathematicsUniversity of CanterburyChristchurchNew Zealand
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be an infinite set, be the group of all bijections of X and S be a semigroup of total transformations of X with the composition of transformations f and g in S defined by the formula

We say that S is a -normal semigroup if

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1985

References

REFERENCES

1. Chen, Gong-Hwai, A note on left cancellative semigroups without idempotents, Semigroup Forum 9 (1974), 278282.CrossRefGoogle Scholar
2. Clifford, A. H. and Preston, G. B., The Algebraic Theory of Semigroups, Vol. II (Mathematical Surveys No. 7, Amer. Math. Soc, Providence, Rhode Island, 1967).Google Scholar
3. Fitzpatrick, S. P. and Symons, J. S. V., Automorphisms of transformation semigroups, Proc. Edinburgh Math. Soc. 19 (1974/1975), 327329.CrossRefGoogle Scholar
4. Levi, I., Schein, B. M., Sullivan, R. P. and Wood, G. R., Automorphisms of Baer-Levi semigroups, J. London Math. Soc. (2) 28 (1983), 492495.CrossRefGoogle Scholar
5. Levi, I., O'Meara, K. C. and Wood, G. R., Automorphisms of Croisot-Teissier semigroups (to appear).Google Scholar
6. Malcev, A. I., Symmetric groupoids, Math. Sb. (N.S.) 31 (73) (1952), 136151;Google Scholar
translated in Amer. Math. Soc. Transl. 113 (1979), 235250.Google Scholar
7. Monk, J. D., Introduction to Set Theory (McGraw-Hill Book Company, 1969).Google Scholar
8. Schein, B. M., Symmetric semigroups of one-to-one transformations, Second all-union symposium on the theory of semigroups, summaries of talks, Sverdlovsk (1979), 99 (Russian).Google Scholar
9. Schein, B. M., Symmetric semigroups of transformations, Abstracts Amer. Math. Soc. 5 (1980), 476.Google Scholar
10. Schreier, J., Uber Abbildungen einer abstrakten Menge auf ihre Teilmengen, Fund. Math. 28 (1937), 261264.CrossRefGoogle Scholar
11. Scott, W. R., Group Theory (Prentice-Hall, 1964).Google Scholar
12. Sullivan, R. P., Automorphisms of transformation semigroups, J. Austral. Math. Soc. (A) 20 (1975), 7784.CrossRefGoogle Scholar
13. Symons, J. S. V., Normal transformation semigroups, J. Austral. Math. Soc. (A) 22 (1976), 385390.CrossRefGoogle Scholar