Hostname: page-component-cb9f654ff-h4f6x Total loading time: 0 Render date: 2025-08-11T04:26:39.668Z Has data issue: false hasContentIssue false

All, most, some? On diffeomorphisms of the interval that are distorted and/or conjugate to powers of themselves

Published online by Cambridge University Press:  02 April 2025

Hélène Eynard-Bontemps*
Affiliation:
Institut Fourier, Laboratoire de Mathématiques, Université Grenoble Alpes, CS 40700, 38058 Grenoble cedex 9, France,
Andrés Navas
Affiliation:
Dpto. de Matemáticas y C.C., Universidad de Santiago de Chile, Alameda Bernardo O’Higgins, Estación Central, Santiago, Chile
*
Corresponding author: Hélène Eynard-Bontemps, email: helene.eynard-bontemps@univ-grenoble-alpes.fr

Abstract

We study the problem of conjugating a diffeomorphism of the interval to (positive) powers of itself. Although this is always possible for homeomorphisms, the smooth setting is rather interesting. Besides the obvious obstruction given by hyperbolic fixed points, several other aspects need to be considered. As concrete results we show that, in class C1, if we restrict to the (closed) subset of diffeomorphisms having only parabolic fixed points, the set of diffeomorphisms that are conjugate to their powers is dense, but its complement is generic. In higher regularity, however, the complementary set contains an open and dense set. The text is complemented with several remarks and results concerning distortion elements of the group of diffeomorphisms of the interval in several regularities.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Avila, A. (2008). Distortion elements in $\mathrm{Diff}^\infty(\mathbb{R}/\mathbb{Z})$. Preprint; .Google Scholar
Banecki, J. and Szarek, T., Distortion in the group of circle homeomorphisms, Ergodic Theory and Dynamical Systems 43(4) (2023), 10811086.10.1017/etds.2022.3CrossRefGoogle Scholar
Banyaga, A., The Structure of Classical Diffeomorphism Groups (Springer, 1997), Math. and its applications.10.1007/978-1-4757-6800-8CrossRefGoogle Scholar
Bonatti, C., Crovisier, S., Vago, G. and Wilkinson, A., Local density of diffeomorphisms with large centralizers, Ann. Sci. Éc. Norm. Supér. 41(6) (2008), 925954.CrossRefGoogle Scholar
Bonatti, C., Crovisier, S. and Wilkinson, A., The C 1 generic diffeomorphism has trivial centralizer, Publ. Math. Inst. Hautes ÉTudes Sci. 109 (2009), 185244.10.1007/s10240-009-0021-zCrossRefGoogle Scholar
Bonatti, C., Monteverde, I., Navas, A. and Rivas, C., Rigidity for actions on the interval arising from hyperbolicity I: Solvable groups, Mathematische Zeitschrift 286 (3-4) (2017), 919949.CrossRefGoogle Scholar
Burslem, L. and Wilkinson, A., Global rigidity of solvable group actions on S 1, Geometry & Topology 8 (2) (2004), 877924.10.2140/gt.2004.8.877CrossRefGoogle Scholar
Calegari, D. and Freedman, M., Distortion in transformation groups, Geometry and Topology 10 (7) (2006), 267293.10.2140/gt.2006.10.267CrossRefGoogle Scholar
Cantwell, J. and Conlon, L., An interesting class of C 1 foliations, Topology and its Applications 126(1-2) (2002), 281297.10.1016/S0166-8641(02)00089-5CrossRefGoogle Scholar
Castro, G., Jorquera, E. and Navas, A., Sharp regularity for certain nilpotent group actions on the interval, Mathematische Annalen 359 (1-2) (2014), 101152.10.1007/s00208-013-0995-1CrossRefGoogle Scholar
Cohen, M., Maximal pseudometrics and distortion of circle diffeomorphisms, J. London Math. Society 102(1) (2020), 437452.10.1112/jlms.12348CrossRefGoogle Scholar
Dinamarca, L. (2023). Distorted elements in transformation groups. PhD thesis, Univ. de Santiago de Chile.Google Scholar
Dinamarca, L. and Escayola, M., Examples of distorted interval diffeomorphisms of intermediate regularity, Ergodic Theory and Dynamical Systems 42(11) (2022), 33113324.10.1017/etds.2021.87CrossRefGoogle Scholar
Eynard-Bontemps, H. (2009). Sur deux questions connexes de connexité concernant les feuilletages et leurs holonomies. PhD thesis, École Normale Sup. de Lyon.Google Scholar
Eynard-Bontemps, H. and Navas, A., Mather invariant, conjugates, and distortion for diffeomorphisms of the interval, J. Funct. Anal. 281 (1) (2021), 109149.10.1016/j.jfa.2021.109149CrossRefGoogle Scholar
Eynard-Bontemps, H. and Navas, A., On residues and conjugacies for germs of 1-D parabolic diffeomorphisms in finite regularity, J. of Inst. Math. Jussieu 23(4) (2024), 18211855.10.1017/S1474748023000403CrossRefGoogle Scholar
Eynard-Bontemps, H. and Navas, A. (2024), With an appendix in collaboration with Virot, T. The space of $C^{1+ac}$ actions of ${\mathbb{Z}}^d$ on a one-dimensional manifold is path-connected. Preprint; arXiv:2306.17731.Google Scholar
Farb, B. and Franks, J., Groups of homeomorphisms of one-manifolds III: Nilpotent subgroups, Ergodic Theory and Dynamical Systems 23(5) (2003), 14671484.10.1017/S0143385702001712CrossRefGoogle Scholar
Franks, D. M. J. J. and Handel, M., Distortion elements in group actions on surfaces, Duke Math. J. 131(3) (2006), 441468.10.1215/S0012-7094-06-13132-0CrossRefGoogle Scholar
Ghys, E., Groups acting on the circle, Enseign. Math. 47(3–4) (2001), 329407.Google Scholar
Gill, N., O’Farrell, A. and Short, I., Reversibility in the group of homeomorphisms of the circle, Bull. of the London Math. Society 41(5) (2009), 885897.10.1112/blms/bdp065CrossRefGoogle Scholar
Gromov, M., Groups of polynomial growth and expanding maps, Inst. Hautes Etudes Sci. Publ. Math. 53 (1981), 5378, with an appendix by J. Tits.10.1007/BF02698687CrossRefGoogle Scholar
Guelman, N. and Liousse, I., C 1–actions of Baumslag–Solitar groups on $\mathbb{S}^1$, Algebr. Geom. Topol. 11 (3) (2011), 17011707.10.2140/agt.2011.11.1701CrossRefGoogle Scholar
Guelman, N. and Liousse, I., Distortion in groups of affine interval exchange transformations, Groups Geom. Dyn. 13(3) (2019), 795819.10.4171/ggd/505CrossRefGoogle Scholar
Hurtado, S. and Militon, E., Distortion and Tits alternative in smooth mapping class groups, Trans. Amer. Math. Soc. 371(12) (2019), 85878623.10.1090/tran/7476CrossRefGoogle Scholar
Kopell, N., Commuting diffeomorphisms. Global Analysis (Proc. Sympos. Pure Math. Vol. XIV, Berkeley, Calif. 1968), (Amer. Math. Soc., Providence, RI, 1970).Google Scholar
Le Roux, F. and Mann, K., Strong distortion in transformation groups, Bull. of the London Math. Soc. 50(1) (2018), 4662.10.1112/blms.12108CrossRefGoogle Scholar
Mann, K. and Rosendal, C., Large-scale geometry of homeomorphism groups, Ergodic Theory and Dynamical Systems 38(7) (2018), 27482779.10.1017/etds.2017.8CrossRefGoogle Scholar
Mather, J. (1979). Unpublished manuscript.Google Scholar
Militon, E., Distortion elements for surface homeomorphisms, Geometry and Topology 18(1) (2014), 521614.10.2140/gt.2014.18.521CrossRefGoogle Scholar
Militon, E., Conjugacy class of homeomorphisms and distortion elements in groups of homeomorphisms, J. Éc. Polytech. Math. 5 (2018), 565604.10.5802/jep.78CrossRefGoogle Scholar
Navas, A., A finitely generated, locally indicable group with no faithful action by C 1 diffeomorphisms of the interval, Geometry and Topology 14 (1) (2010), 573584.10.2140/gt.2010.14.573CrossRefGoogle Scholar
Navas, A., Groups of circle diffeomorphisms, Chicago Lect. in Math., University of Chicago Press, (2011), 290.10.7208/chicago/9780226569505.001.0001CrossRefGoogle Scholar
Navas, A., (Un)distorted diffeomorphisms in different regularities, Israel J. Math. 244(2) (2021), 727741.10.1007/s11856-021-2188-zCrossRefGoogle Scholar
Navas, A., On conjugates and the asymptotic distortion of one-dimensional $C^{1+bv}$ diffeomorphisms, Int. Math. Res. Not. IMRN 2023(1) (2023), 372405.10.1093/imrn/rnab281CrossRefGoogle Scholar
Parkhe, K., Nilpotent dynamics in dimension one: Structure and smoothness, Ergodic Theory and Dynamical Systems 36(7) (2016), 22582272.10.1017/etds.2015.8CrossRefGoogle Scholar
Plante, J. and Thurston, W., Polynomial growth in holonomy groups of foliations, Comment. Math. Helv. 51 (1976), 567584.10.1007/BF02568174CrossRefGoogle Scholar
Polterovich, L. and Sodin, M., A growth gap for diffeomorphisms of the interval, Journal d’Analyse Mathématique 92(1) (2004), 191209.10.1007/BF02787761CrossRefGoogle Scholar
Rosendal, S., Coarse Geometry of Topological Groups (Cambridge University Press, 2021).10.1017/9781108903547CrossRefGoogle Scholar
Sergeraert, F., Feuilletages et difféomorphismes infiniment tangents à l’identité, Invent. Math. 39(3) (1977), 253275.10.1007/BF01402976CrossRefGoogle Scholar
Szekeres, G., Regular iteration of real and complex functions, Acta Math. 100 (3-4) (1958), 203258.10.1007/BF02559539CrossRefGoogle Scholar
Yoccoz, J.-C., Centralisateurs et conjugaison différentiable des difféomorphismes du cercle. Petits diviseurs en dimension 1, Astérisque 231 (1995), 89242.Google Scholar