Published online by Cambridge University Press: 22 August 2023
We propose a notion of a proper Ehresmann semigroup based on a three-coordinate description of its generating elements governed by certain labelled directed graphs with additional structure. The generating elements are determined by their domain projection, range projection and σ-class, where σ denotes the minimum congruence that identifies all projections. We prove a structure result on proper Ehresmann semigroups and show that every Ehresmann semigroup has a proper cover. Our covering monoid turns out to be isomorphic to that from the work by Branco, Gomes and Gould and provides a new view of the latter. Proper Ehresmann semigroups all of whose elements admit a three-coordinate description are characterized in terms of partial multiactions of monoids on semilattices. As a consequence, we recover the two-coordinate structure result on proper restriction semigroups.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.