Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T09:28:35.223Z Has data issue: false hasContentIssue false

Iterative roots of two-dimensional mappings

Published online by Cambridge University Press:  05 April 2023

Zhiheng Yu
Affiliation:
School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 611756, China (yuzhiheng9@163.com)
Lin Li
Affiliation:
Department of Mathematics, Jiaxing University, Jiaxing, Zhejiang 314001, China (matlinl@zjxu.edu.cn)
Janusz Matkowski
Affiliation:
Institute of Mathematics, University of Zielona Góra, Szafrana 4a, Zielona Góra PL 65-516, Poland (J.Matkowski@wmie.uz.zgora.pl)

Abstract

As a weak version of embedding flow, the problem of iterative roots is studied extensively in one dimension, especially in monotone case. There are few results in high dimensions because the constructive method dealing with monotone mappings is unavailable. In this paper, by introducing a kind of partial order, we define the monotonicity for two-dimensional mappings and then present some results on the existence of iterative roots for linear mappings, triangle-type mappings, and co-triangle-type mappings, respectively. Our theorems show that even the property of monotonicity for iterative roots of monotone mappings, which is a trivial result in one dimension, does not hold anymore in high dimensions. At the end of this paper, the problem of iterative roots for two well-known planar mappings, that is, Hénon mappings and coupled logistic mappings, are also discussed.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, T., Generalized Hénon mappings and foliation by injective Brody curves, J. Geom. Anal. 28 (2018), 317334.10.1007/s12220-017-9821-4CrossRefGoogle Scholar
Arai, Z., Ishii, Y. and Takahasi, H., Boundary of the horseshoe locus for the Hénon family, SIAM J. Appl. Dyn. Syst. 17 (2018), 22342248.10.1137/18M1174684CrossRefGoogle Scholar
Arosio, L., Benini, A., Fornaess, J. and Peters, H., Dynamics of transcendental Hénon maps, Math. Ann. 373 (2019), 853894.10.1007/s00208-018-1643-6CrossRefGoogle Scholar
Baron, K. and Jarczyk, W., Recent results on functional equations in a single variable, perspectives and open problems, Aequationes Math. 61 (2001), 148.10.1007/s000100050159CrossRefGoogle Scholar
Barrat, A., Barthelemy, M. and Vespignani, A., Dynamical processes on complex networks (Cambridge University Press, 2008).10.1017/CBO9780511791383CrossRefGoogle Scholar
Becker, T. and Weispfenning, V., GröBner bases: a computational approach to commutative algebra (Springer, New York, 1993).10.1007/978-1-4612-0913-3CrossRefGoogle Scholar
Belitskii, G., and Tkachenko, V., One-dimensional functional equations, in Operator theory: advances and applications, 144 (ed. Gohberg, I.), (Birkhäuser Verlag, Basel, 2003).Google Scholar
Bera, S., Pal, R. and Verma, K., A rigidity theorem for Hénon maps, Eur. J. Math. 6 (2020), 508532.10.1007/s40879-019-00326-7CrossRefGoogle Scholar
Bessa, M. and Rocha, J., On the fundamental regions of a fixed point free conservative Hénon map, Bull. Aust. Math. Soc. 77 (2008), 3748.10.1017/S000497270800004XCrossRefGoogle Scholar
Bhat, B., and Gopalakrishna, C., Iterative square roots of functions, Ergodic Theory Dynam. Systems. doi: 10.1017/etds.2022.35.Google Scholar
Blokh, A., Coven, E., Misiurewicz, M. and Nitecki, Z., Roots of continuous piecewise monotone maps of an interval, Acta Math. Univ. Comenian. (N.S.) 60 (1991), 310.Google Scholar
Bödewadt, U. T., Zur Iteration reeller Funktionen, Math. Z. 49 (1944), 497516.10.1007/BF01174213CrossRefGoogle Scholar
Bogatyi, S., On the nonexistence of iterative roots, Topology Appl. 76 (1997), 97123.10.1016/S0166-8641(96)00107-1CrossRefGoogle Scholar
Buchberger, B., Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem nulldimensional polynomideal, PhD Thesis, Universität Innsbruck, Austria, 1965.Google Scholar
Chowdhury, A. and Chowdhury, K., Bifurcation in a coupled logistic map. Some analytic and numerical results, Int. J. Theor. Phys. 30 (1991), 97111.10.1007/BF00670762CrossRefGoogle Scholar
Devaney, R., Homoclinic bifurcations and the area-conserving Hénon mapping, J. Differential Equations 51 (1984), 254266.10.1016/0022-0396(84)90110-4CrossRefGoogle Scholar
Elsadanya, A., Yousef, A. and Elsonbaty, A., Further analytical bifurcation analysis and applications of coupled logistic maps, Appl. Math. Comput. 338 (2018), 314336.Google Scholar
Friedland, S. and Milnor, J., Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dynam. Systems 9 (1989), 6799.10.1017/S014338570000482XCrossRefGoogle Scholar
Haĭdukov, P. I., On searching a function from a given iterate in Russian, Uch. Zap. Buriatsk. Ped. Inst. 15 (1958), 328.Google Scholar
Hénon, M., A two dimensinal mapping with a strange attractor, Comm. Math. Phys. 50 (1976), 6977.10.1007/BF01608556CrossRefGoogle Scholar
Kneser, H., Reelle analytische Lösungen der Gleichung $\phi(\phi(x))=e^x$ und verwandter Funktionalgleichungen, J. Reine. Angew. Math. 187 (1950), 5157.Google Scholar
Kuczma, M., On the functional equation $\varphi^n (x) = g(x)$, Ann. Polon. Math. 11 (1961), 161175.10.4064/ap-11-2-161-175CrossRefGoogle Scholar
Kuczma, M., Functional equations in a single variable (Polish Scientific Publishers, Warszawa, 1968). Google Scholar
Kuczma, M., Fractional iteration of differentiable functions, Ann. Polon. Math. 22 (1969), 217227.10.4064/ap-22-2-217-227CrossRefGoogle Scholar
Kuczma, M., Choczewski, B. and Ger, R., Iterative functional equations, in Encyclopedia of mathematics and its applications, Volume 32 (Cambridge University Press, Cambridge, 1990).Google Scholar
Lampart, M. and Oprocha, P., Chaotic sub-dynamics in coupled logistic maps, Phys. D 335 (2016), 4553.10.1016/j.physd.2016.06.010CrossRefGoogle Scholar
Leśniak, Z., On fractional iterates of a homeomorphism of the plane, Ann. Polon. Math. 79 (2002), 129137.10.4064/ap79-2-4CrossRefGoogle Scholar
Leśniak, Z., On fractional iterates of a Brouwer homeomorphism embeddable in a flow, J. Math. Anal. Appl. 366 (2010), 310318.10.1016/j.jmaa.2009.12.033CrossRefGoogle Scholar
Liu, L., Jarczyk, W., Li, L. and Zhang, W. N., Iterative roots of piecewise monotonic functions of nonmonotonicity height not less than 2, Nonlinear Anal. 75 (2012), 286303.10.1016/j.na.2011.08.033CrossRefGoogle Scholar
Lloyd, A., The coupled logistic map: a simple model for the effects of spatial heterogeneity on population dynamics, J. Theor. Biol. 173 (1995), 217230.10.1006/jtbi.1995.0058CrossRefGoogle Scholar
Ou, D., Nonexistence of wandering domains for strongly dissipative infinitely renormalizable Hénon maps at the boundary of chaos, Invent. Math. 219 (2020), 219280.10.1007/s00222-019-00902-4CrossRefGoogle Scholar
Radu, R. and Tanase, R., Semi-parabolic tools for hyperbolic Hénon maps and continuity of Julia sets in $\mathbb{C}^2$, Trans. Amer. Math. Soc. 370 (2018), 39493996.10.1090/tran/7061CrossRefGoogle Scholar
Rice, R. E., Schweizer, B. and Sklar, A., When is $f(f(z))=az^2+bz+c?$, Amer. Math. Monthly 87 (1980), 131142.10.1080/00029890.1980.11995008CrossRefGoogle Scholar
Romanovski, V. G. and Shafer, D. S., The center and cyclicity problems: a computational algebra approach (Birkhäuser, Boston, 2009).Google Scholar
Storgatz, S., Sync: the emerging science of spontaneous order (Hyperion, 2003).Google Scholar
Tanase, R., Raluca complex Hénon maps and discrete groups, Adv. Math. 295 (2016), 5389.10.1016/j.aim.2016.02.034CrossRefGoogle Scholar
Targonski, G., Topics in iteration theory (Vandenhoeck and Ruprecht, Göttingen, 1981).Google Scholar
Valenzuela-Henríquez, F., On critical point for two-dimensional holomorphic systems, Ergodic Theory Dynam. Systems 37 (2017), 22762312.10.1017/etds.2016.2CrossRefGoogle Scholar
Yu, Z., Li, L. and Liu, L., Topological classifications for a class of 2-dimensional quadratic mappings and an application to iterative roots, Qual. Theory Dyn. Syst. 20 (2021), .10.1007/s12346-020-00444-8CrossRefGoogle Scholar
Yu, Z., Yang, L. and Zhang, W., Discussion on polynomials having polynomial iterative roots, J. Symbolic Comput. 47(10) (2012), 11541162.10.1016/j.jsc.2011.12.038CrossRefGoogle Scholar
Zhang, W., PM functions, their characteristic intervals and iterative roots, Ann. Polon. Math. 65 (1997), 119128.10.4064/ap-65-2-119-128CrossRefGoogle Scholar