Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T03:44:45.916Z Has data issue: false hasContentIssue false

SYSTEMATIC CLASSIFICATION OF ADAPTIVE FAÇADES – PREPARING A DATABASE

Published online by Cambridge University Press:  19 June 2023

Michael P. Voigt*
Affiliation:
University of Stuttgart
Daniel Roth
Affiliation:
University of Stuttgart
Matthias Kreimeyer
Affiliation:
University of Stuttgart
*
Voigt, Michael P., University of Stuttgart, Germany, michael.voigt@iktd.uni-stuttgart.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Adaptive façades (AF) present a promising approach to reduce environmental impacts in the Architecture, Engineering, and Construction sector. However, the automatization of the façade produces new challenges as the complexity of the system increases. To support the early phase of interdisciplinary development, solution collections such as databases are helpful. Previous research identified that existing solution collections of AF do not meet the requirements that such a method demands. In the effort to develop an optimized database, this paper investigates how the state of the art can be structured in terms of content in order to present it in the database. Here, a set of design parameters is developed based on identified requirements and on the main characteristics of AF that were previously elaborated. This set offers a comprehensive perspective on the previously realized functions and mechanisms of AF and can also contribute to finding creative solutions in the form of new concepts by combining the design parameters in new ways. Finally, 40 case studies of previously implemented adaptive façades are used to evaluate the set of design parameters.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Addington, D.M. and Schodek, D.L. (2005), Smart materials and technologies: For the architecture and design professions, Reprint, Architectual Press, Amsterdam.Google Scholar
Aelenei, L., Aelenei, D., Romano, R., Mazzucchelli, E.S., Brzezicki, M. and Rico-Martinez, J.M. (Eds.) (2018), Case Studies – Adaptive Facade Network, TU Delft Open, Delft.Google Scholar
Al-Obaidi, K.M., Azzam Ismail, M., Hussein, H. and Abdul Rahman, A.M. (2017), “Biomimetic building skins: An adaptive approach”, Renewable and Sustainable Energy Reviews, Vol. 79, pp. 14721491. www.doi.org/10.1016/j.rser.2017.05.028CrossRefGoogle Scholar
Basarir, B. (2017), “A Classification Approach for Adaptive Façades”, ICBEST Istanbul: Interdisciplinary Perspectives for Future Building Envelopes.Google Scholar
Bedon, C., Honfi, D., Machalická, K., Eliášová, M., Vokáč, M., Kozłowski, M., Wüest, T., Santos, F. and Portal, N.W. (2019), “Structural characterisation of adaptive facades in Europe – Part I: Insight on classification rules, performance metrics and design methods”, Journal of Building Engineering, Vol. 25. www.doi.org/10.1016/j.jobe.2019.100797CrossRefGoogle Scholar
Blessing, L.T. and Chakrabarti, A. (2009), DRM, a Design Research Methodology, Springer London, London. www.doi.org/10.1007/978-1-84882-587-1Google Scholar
Böke, J., Knaack, U. and Hemmerling, M. (2020), “Automated adaptive façade functions in practice - Case studies on office buildings”, Automation in Construction, Vol. 113. www.doi.org/10.1016/j.autcon.2020.103113Google Scholar
Borschewski, D., Voigt, M., Albrecht, S., Roth, D., Leistner, P. and Kreimeyer, M. (2023), “More for Less – The Untapped Sustainability Potentials of Adaptive Façades through Substitution of Building Service Equipment”, Building and Environment, 2023. www.doi.org/10.1016/j.buildenv.2023.110069Google Scholar
Ehrlenspiel, K. and Meerkamm, H. (2017), Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 6. überarbeitete und erweiterte Auflage, Hanser, München, Wien. www.doi.org/10.3139/9783446449084CrossRefGoogle Scholar
EN ISO 7730 (2005), Ergonomie der thermischen Umgebung – Analytische Bestimmung und Interpretation der thermischen Behaglichkeit durch Berechnung des PMV- und des PPD-Indexes und Kriterien der lokalen thermischen Behaglichkeit (accessed 20 September 2022).Google Scholar
Eurostat (2021), Energy consumption in households 2019, Eurostat. available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households (accessed 9 August 2021).Google Scholar
Feldhusen, J. and Grote, K.-H. (Eds.) (2013), Pahl/Beitz Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung, 8. vollständig überarbeitete Auflage, Springer Vieweg, Berlin, Heidelberg.CrossRefGoogle Scholar
Gosztonyi, S. (2018), “The Role of Geometry for Adaptability: Comparison of Shading Systems and Biological Role Models”, Journal of Facade Design and Engineering: Special Issue FAÇADE 2018 – Adaptive!, Vol. 6 No. 3, pp. 163174. www.doi.org/10.7480/JFDE.2018.3.2574Google Scholar
Hafizi, N. and Vural, S.M. (2022), “New Taxonomy of Climate Adaptive Building Shell Office Buildings: Focus on User–Façade Interaction Scenarios”, Energies, Vol. 15 No. 14, p. 5268. www.doi.org/10.3390/en15145268CrossRefGoogle Scholar
Heiselberg, P. (Ed.) (2009), IEA ECBCS Annex 44 Integrating Environmentally Responsive Elements in Buildings: Expert Guide – Part 1 Responsive Building Concepts, Aalborg University, Denmark.Google Scholar
Heusler, W. (2013), “Bewegung in der Gebäudehülle? Gegenüberstellung passiver und aktiver Konzepte”, Stahlbau, Vol. 82 No. S1, pp. 281291. www.doi.org/10.1002/stab.201390071Google Scholar
IEA (2013), Transition to Sustainable Buildings: Strategies and Opportunities to 2050, International Energy Acency, OECD Publishing, Paris. www.doi.org/10.1787/9789264202955-enGoogle Scholar
Karanouh, A. and Kerber, E. (2015), “Innovations in dynamic architecture”, Journal of Facade Design and Engineering, Vol. 3 No. 2, pp. 185221. www.doi.org/10.7480/JFDE.2015.2.1017CrossRefGoogle Scholar
Kuru, A., Oldfield, P., Bonser, S. and Fiorito, F. (2019), “Biomimetic adaptive building skins: Energy and environmental regulation in buildings”, Energy and Buildings, Elsevier, Vol. 205. www.doi.org/10.1016/j.enbuild.2019.109544CrossRefGoogle Scholar
Laufer, F., Roth, D. and Binz, H. (2020), “Mass Distribution as an Approach for Designing Lightweight-Driven Product Architectures”, in Nord Design, The Design Society. www.doi.org/10.35199/NORDDESIGN2020.10Google Scholar
Loonen, R., Hoes, P.-J. and Hensen, J. (2014), “Performance prediction of buildings with Responsive Building Elements: Challenges and Solutions”, Proceedings of the 2014 Building Simulation and Optimization Conference.Google Scholar
Loonen, R., Rico-Martinez, J., Favoino, F., Brzezicki, M., Menezo, C., La Ferla, G. and Aelenei, L. (2015), “Design for façade adaptability: Towards a unified and systematic characterization”, 10th Advanced Building Skins Conference, pp. 12841294.Google Scholar
Lopez, M., Rubio, R., Martın, S., Croxford, B., Jackson, R., López, M., Rubio, R. and Martín, S. (2015), “Active materials for adaptive architectural envelopes based on plant adaptation principles”, Journal of Facade Design and Engineering, Vol. 3 No. 1, pp. 2738. www.doi.org/10.3233/FDE-150026CrossRefGoogle Scholar
Matin, N.H. and Eydgahi, A. (2019), “Technologies used in responsive facade systems: a comparative study”, Intelligent Buildings International, pp. 120. www.doi.org/10.1080/17508975.2019.1577213Google Scholar
Matin, N.H., Eydgahi, A. and Shyu, S. (2017), “Comparative Analysis of Technologies Used in Responsive Building Facades”, in ASEE Annual Conference & Exposition.Google Scholar
Mols, T., Blumberga, A. and Karklina, I. (2017), “Evaluation of climate adaptive building shells: multi-criteria analysis”, Energy Procedia, Vol. 128, pp. 292296. www.doi.org/10.1016/j.egypro.2017.09.077Google Scholar
Pahl, G., Beitz, W., Feldhusen, J. and Grote, K.-H. (2007), Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung ; Methoden und Anwendung, 7. Aufl., Springer, Berlin.Google Scholar
Pimmler, T.U. and Eppinger, S.D. (1994), “Integration analysis of product decompositions”, ASME Design Theory and Methodology Conference, Minneapolis, No. 68, pp. 343351.CrossRefGoogle Scholar
Soudian, S. and Berardi, U. (2021), “Development of a performance-based design framework for multifunctional climate-responsive façades”, Energy and Buildings, Vol. 231, pp. 119. www.doi.org/10.1016/j.enbuild.2020.110589Google Scholar
Tabadkani, A., Roetzel, A., Li, H. and Tsangrassoulis, A. (2021), “Design approaches and typologies of adaptive facades: A review”, Automation in Construction, Vol. 121. www.doi.org/10.1016/j.autcon.2020.103450Google Scholar
Taveres-Cachat, E., Grynning, S., Thomsen, J. and Selkowitz, S. (2019), “Responsive building envelope concepts in zero emission neighborhoods and smart cities - A roadmap to implementation”, Building and Environment, Vol. 149, pp. 446457. www.doi.org/10.1016/j.buildenv.2018.12.045Google Scholar
VDI (1982), Konstruktionsmethodik; Erstellung und Anwendung von Konstruktionskatalogen No. VDI 2222 Blatt 2, Beuth Verlag GmbH, available at: https://www.beuth.de/de/technische-regel/vdi-2222-blatt-2/549878 (accessed 1 August 2022).Google Scholar
Voigt, M., Chwalek, K., Roth, D., Kreimeyer, M. and Blandini, L. (2023), “The Integrated Design Process of Adaptive Facades - a Comprehensive Perspective.” Journal of Building Engineering. www.doi.org/10.1016/j.jobe.2023.106043CrossRefGoogle Scholar
Voigt, M., Roth, D. and Binz, H. (2021a), “Challenges with Adaptive Façades - a Lifecycle Perspective”, 16th Advanced Building Skins Conference & Expo, 21-22 Oktober 2021, Bern, available at: https://www.researchgate.net/publication/355499453_Challenges_with_adaptive_facades_a_life_cycle_perspective (accessed 11 February 2022).Google Scholar
Voigt, M.P., Klaiber, D., Hommel, P., Roth, D., Binz, H. and Vietor, T. (2021b), “Method for Identifying Suitable Components for Functional Integration – Focusing on Geometric Characteristics”, Proceedings of the Design Society, Vol. 1, pp. 20472056. www.doi.org/10.1017/pds.2021.466CrossRefGoogle Scholar
Voigt, M.P., Roth, D. and Kreimeyer, M. (2022), “Main Characteristics of Adaptive Façades”, International Design Conference - Design 2022, Proceedings of the Design Society, pp. 25432552. www.doi.org/10.1017/pds.2022.257Google Scholar
Yoon, J. (2018), “Climate-adaptive Facade Design with Smart Materials: Evaluation and Strategies of Thermo-responsive Smart Material Applications for Building Skins in Seoul”, in PLEA 2018: Smart and Healthy Within the Two-Degree Limit, Hong Kong, pp. 620626.Google Scholar