Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:09:04.727Z Has data issue: false hasContentIssue false

INFLUENCE OF SPECIFICATIONS ACCORDING TO THE SYSTEM OF GEOMETRICAL PRODUCT SPECIFICATIONS (GPS) ON SCRAP IN TECHNICAL PRODUCTS

Published online by Cambridge University Press:  27 July 2021

Peter Gust
Affiliation:
University of Wuppertal
Alina Sersch*
Affiliation:
University of Wuppertal
Marco Kuhlmeier
Affiliation:
University of Wuppertal
*
Sersch, Alina, University of Wuppertal, School of Mechanical Engineering and Safety Engineering, Germany, alina.sersch@uni-wuppertal.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The success of a company is directly linked to its economic objectives. One of the elementary objectives is to maximize profit by reducing the company's own costs in order to increase competitiveness in the market. State of the art is the function-oriented and unambiguous technical specification through the application of Geometrical Product Specifications (GPS). Linking costs related to the GPS system is currently only possible to a limited extent. This contribution presents an approach to quantify costs based on statistical tolerance analysis. The application is intended to determine the impact of a GPS-compliant specification in direct comparison to a non-compliant technical drawing by analyzing scrap rates. In this way, an assessment of the changes associated with the consistent application of the GPS system should be achieved. The results of the study show that a comparison is only possible to a certain degree due to the different characteristics. Based on this finding, an extended evaluation methodology is described.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Armillotta, A., Semeraro, Q. (2011), “Geometric Tolerance Specification”, In: Colosimo, B., Senin, N. (Eds.), Geometric Tolerances - Impact on Product Design, Quality Inspection and Statistical Process Monitoring, Springer, London, pp. 337. https://doi.org/10.1007/978-1-84996-311-4.Google Scholar
DIN ISO 2768-1:1991. Allgemeintoleranzen - Toleranzen für Längen- und Winkelmaße ohne einzelne Toleranzeintragung, Deutsches Institut für Normung e.V. (DIN), Berlin.Google Scholar
DIN ISO 2768-2:1991. Allgemeintoleranzen - Toleranzen für Form und Lage ohne einzelne Toleranzeintragung, Deutsches Institut für Normung e.V. (DIN), Berlin.Google Scholar
Feng, Q., Kapur, K. (2008), “Quality engineering: control, design and optimization”, In: Misra, K. (Ed.), Handbook of Performability Engineering, Springer, London, pp. 171186. https://doi.org/10.1007/978-1-84800-131-213.CrossRefGoogle Scholar
Gust, P. and Sersch, A. (2020), “Geometrical Product Specifications (GPS): A Review of Teaching Approaches”, Procedia CIRP, Vol. 92, pp. 123128. https://doi.org/10.1016/j.procir.2020.05.187.CrossRefGoogle Scholar
Hallmann, M., Schleich, B., Heling, B., Aschenbrenner, A., Wartzack, S. (2018), “Comparison of different methods for scrap rate estimation in sampling-based tolerance-cost-optimization”, Procedia CIRP, Vol. 75, pp. 5156. https://doi.org/10.1016/j.procir.2018.01.005.CrossRefGoogle Scholar
Haq, A.N., Sivakumar, K., Saravanan, R., Muthiah, V. (2005), “Tolerance design optimization of machine elements using genetic algorithm”, Int J of Adv Manuf Technol, Vol. 25, No. 3-4, pp. 385391. https://doi.org/10.1007/s00170-003-1855-z.CrossRefGoogle Scholar
International Organization for Standardization (ISO) (2020), ISO/TC: Dimensional and geometrical product specifications and verification. [online] Available at: https://www.iso.org/committee/54924.html (10.09.2020).Google Scholar
ISO/TC 213 (2008), Business Plan − Dimensional and geometrical product specifications and verification. [online] International Organization for Standardization. Available at: https://isotc.iso.org/livelink/livelink/fetch/2000/2122/687806/ISO_TC_213__Dimensional_and_geometrical_product_specifications_and_verification_.pdf?nodeid=999295&vernum=-2 (accessed 03.01.2018).Google Scholar
ISO 1101:2017-02. Geometrical product specifications (GPS): Geometrical tolerancing − Tolerances of form, orientation, location and run-out, International Organization for Standardization (ISO), Switzerland.Google Scholar
ISO 5459:2011-08. Geometrical product specifications (GPS): Geometrical tolerancing − Datums and datum systems, International Organization for Standardization (ISO), Switzerland.Google Scholar
ISO 8015:2011-06. Geometrical product specifications (GPS) − Fundamentals − Concepts, principles and rules, International Organization for Standardization (ISO), Switzerland.Google Scholar
ISO 9001:2015-09. Quality management systems – Fundamentals and vocabulary, International Organization for Standardization (ISO), Switzerland.Google Scholar
ISO 10579:2010-03. Geometrical product specifications (GPS) - Dimensioning and tolerancing - Non-rigid parts, International Organization for Standardization (ISO), Switzerland.Google Scholar
ISO 14405-2:2018-12. Geometrical product specifications (GPS) – Dimensional tolerancing – Part 2: Dimensions other than linear or angular sizes, International Organization for Standardization (ISO), Switzerland.Google Scholar
ISO 14638:2015-01. Geometrical product specifications (GPS) − Matrix model, International Organization for Standardization (ISO), Switzerland.Google Scholar
Läpple, V. (2019), ISO GPS - Warum Sie Geometrische Produktspezifikationen richtig anwenden sollten. [online] Vogel Communications Group. Available at: https://www.konstruktionspraxis.vogel.de/warum-sie-geometrische-produktspezifikationen-richtig-anwenden-sollten-a-819171/ (18.11.2020).Google Scholar
Macleod, I. (2020), Geometrical Product Specification − the work of ISO/TC213, 16th CIRP Conference on Computer Aided Tolerancing (CIRP CAT), Charlotte.Google Scholar
Morse, E.P., Shakarji, C.M., Srinivasan, V. (2018), “A Brief Analysis of Recent ISO Tolerancing Standards and Their Potential Impact on Digitization of Manufacturing”, Procedia CIRP, Vol. 75, pp. 1118. https://doi.org/10.1016/j.procir.2018.04.080.CrossRefGoogle Scholar
Saravanan, A., Balamurugan, C., Sivakumar, K., Ramabalan, S. (2014), “Optimal geometric tolerance design framework for rigid parts with assembly function requirements using evolutionary algorithms”, Int J Adv Manuf Technol, Vol. 73, No. 9-12, pp. 12191236. https://doi.org/10.1007/s00170-014-5908-2.CrossRefGoogle Scholar
Schuldt, J., Hofmann, R., Gröger, S. (2020), “Introduction of a maturity model for the assessment of the integration of the GPS system in companies”, Procedia CIRP, Vol. 92, pp. 129133. https://doi.org/10.1016/j.procir.2020.05.188.CrossRefGoogle Scholar
Sersch, A. and Gust, P. (2018), “Empirische Untersuchung zur Überprüfung des Anwendungsgrades der Geometrischen Produktspezifikation (GPS)”, 8. Workshop Arbeitsgemeinschaft Toleranzmanagement (ATOL), Krefeld, March 2018, https://doi.org/10.13140/RG.2.2.34009.57440.CrossRefGoogle Scholar
Sigmetrix (2020), GD&T Advisor Software. [online] Available at: https://www.sigmetrix.com/products/gdt-software/ (25.11.2020)Google Scholar
Terán, A., Pratt, D.B., Case, K.E. (1996), “Present worth of external quality losses for symmetric nominal-is-better quality characteristics”, Eng Econ, Vol. 42, No. 1, pp. 3952. https://doi.org/10.1080/00137919608903168.CrossRefGoogle Scholar
Zhang, C., Wang, H. (1993), “Integrated tolerance optimisation with simulated annealing”, Int J Adv Manuf Technol, Vol. 8, No. 3, pp. 167174. https://doi.org/10.1007/BF01749907.CrossRefGoogle Scholar
Vornholz, G. (2015), International Immobilienökonomie: Globalisierung der Immobilienmärkte, De Gruyter Oldenbourg, Berlin. https://doi.org/10.1515/9783110437829.CrossRefGoogle Scholar