Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T15:09:52.417Z Has data issue: false hasContentIssue false

IMPLEMENTATION OF MAINTENANCE STRATEGIES IN THE LIFE CYCLE COSTING OF PRODUCT-SERVICE SYSTEMS

Published online by Cambridge University Press:  27 July 2021

Jannik Alexander Schneider*
Affiliation:
Leibniz University Hannover
Johanna Wurst
Affiliation:
Leibniz University Hannover
Ines Gruetzmann
Affiliation:
Baker Hughes
Iryna Mozgova
Affiliation:
Leibniz University Hannover
Roland Lachmayer
Affiliation:
Leibniz University Hannover
*
Schneider, Jannik Alexander Leibniz University Hannover Institut für Produktentwicklung und Gerätebau Germany, schneider@ipeg.uni-hannover.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Estimating the costs of products during development to design a cost efficent product is a well established process. But in the case of Product-Service Systems estimating the costs of the individual product is not sufficent. Instead it is necessary to calculate the cost incured over the entire life cycle of the product. Because with Product-Service Systems the majority of costs is not incurred during manufacturing of the product but instead during the operation. One of the major cost components accruing during the operation of the product are the maintennace costs. Therefore, current life cycle costing models show the impoact of component design on the maintennace cost of the Product-Service System. But they do not show how different maintennace strategies that can have an impact on the overall life cycle costs of the Product-Service System. Thus, this paper shows a method for the implementation of different maintennace strategies into life cycle costing and applies it in an industrial use case.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Ansari, F., Glawar, R. and Nemeth, T. (2019), “PriMa: a prescriptive maintenance model for cyber-physical production systems”, International Journal of Computer Integrated Manufacturing, Vol. 32 No. 4-5, pp. 482503.10.1080/0951192X.2019.1571236CrossRefGoogle Scholar
Asiedu, Y. and Gu, P. (1998), “Product life cycle cost analysis: State of the art review”, International Journal of Production Research, Vol. 36 No. 4, pp. 883908.CrossRefGoogle Scholar
Ben-Daya, M. (2009), Handbook of maintenance management and engineering, Springer, London.10.1007/978-1-84882-472-0CrossRefGoogle Scholar
Ben-Daya, M., Duffuaa, S.O. and Raouf, A. (Eds.) (2000), Maintenance, Modeling and Optimization, Springer US, Boston, MA, s.l.10.1007/978-1-4615-4329-9CrossRefGoogle Scholar
Bull, J.W. (Ed.) (1993), Life cycle costing for construction, 1. ed., Blackie Academic & Professional, London.Google Scholar
Ehrlenspiel, K., Hundal, M.S., Kiewert, A. and Lindemann, U. (2007), Cost-Efficient Design, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg.10.1115/1.802507CrossRefGoogle Scholar
Fabrycky, W. and Blanchard, B. (1991), “Life Cycle Cost and Economic Analysis”.Google Scholar
Gatzen, M., Pemberton, R., Peters, V. and Krueger, S. (2013), “A holistic design for excellence model based on life cycle costing and design scorecards”.Google Scholar
Goh, B.H. and Sun, Y. (2016), “The development of life-cycle costing for buildings”, Building Research & Information, Vol. 44 No. 3, pp. 319333.10.1080/09613218.2014.993566CrossRefGoogle Scholar
Johannknecht, F. (2018), Lebenszyklusorientiertes Kostenmanagement für Produkt-Service Systeme: Dissertation, Berichte aus dem iPeG, 2017, Band 5, PZH Verlag, Garbsen.Google Scholar
Johannknecht, F., Gatzen, M.M., Hahn, D. and Lachmayer, R. (2016a), “Holistic Life Cycle Costing Approach for Different Development Phases of Drilling Tools”, in International Petroleum Technology Conference, 2016-11-12, Bangkok, Thailand, International Petroleum Technology Conference.Google Scholar
Johannknecht, F., Gatzen, M.M. and Lachmayer, R. (2016b), “Life Cycle Cost Model for Considering Fleet Utilization in Early Conceptual Design Phases”, Procedia CIRP, Vol. 48, pp. 6872.10.1016/j.procir.2016.03.112CrossRefGoogle Scholar
Johannknecht, F., Herrmann, M. and Lachmayer, R. (2019), “Kostenmanagement von Produkt-Service-Systemen. Managing Costs of Product-Service Systems”, Die Konstruktion, No. 6.10.37544/0720-5953-2019-06-84CrossRefGoogle Scholar
Lachmayer, R., Mozgova, I., Gottwald, P. (2015), “Formulation of Paradigm of Technical Inheritance”, Proceedings of the 20th International Conference on Engineering Design (ICED15), Milan, Italy, 27.-30.07.2015Google Scholar
Liu, B., Lin, J., Zhang, L. and Kumar, U. (2019), “A Dynamic Prescriptive Maintenance Model Considering System Aging and Degradation”, IEEE Access, Vol. 7, pp. 9493194943.10.1109/ACCESS.2019.2928587CrossRefGoogle Scholar
Pawellek, G. (2013), Integrierte Instandhaltung und Ersatzteillogistik: Vorgehensweisen, Methoden, Tools, Springer Vieweg, Berlin.10.1007/978-3-642-31383-7CrossRefGoogle Scholar
Mozgova, I., Barton, S., Demminger, C., Miebach, T., Taptimthong, P., Lachmayer, R., Nyhuis, P., Reimche, W., Wurz, M. C. (2017), “Technical Inheritance: Information basis for the identification and development of product generations”, Proceedings of the Design Society: International Conference on Engineering Design, Vol. 6 Design Information and Knowledge, pp. 091100.Google Scholar
Salem, O., AbouRizk, S. and Ariaratnam, S. (2003), “Risk-based Life-cycle Costing of Infrastructure Rehabilitation and Construction Alternatives”, Journal of Infrastructure Systems, Vol. 9 No. 1, pp. 615.10.1061/(ASCE)1076-0342(2003)9:1(6)CrossRefGoogle Scholar
Schneider, J.A., Gatzen, M.M. and Lachmayer, R. (2020), “THE IMPORTANCE OF CONSIDERING FLEET SIZE IN THE LIFECYCLE COST ANALYSIS OF PRODUCT SERVICE SYSTEMS”, Proceedings of the Design Society: DESIGN Conference, Vol. 1, pp. 13651374.10.1017/dsd.2020.284CrossRefGoogle Scholar
Schneider, J.A., Mozgova, I. and Lachmayer, R. (2019), “An Approach for Choosing the Cost Effective Design for a Product-Service System While Maintaining its Desired Reliability”, Proceedings of the Design Society: International Conference on Engineering Design, Vol. 1 No. 1, pp. 30413050.Google Scholar
McAloone, T., Mougaard, Krestine, Neugebauer, L., Nielsen, T. and Bey, N. (2011), “ORTHOGONAL VIEWS ON PRODUCT/SERVICE-SYSTEM DESIGN IN AN ENTIRE INDUSTRY BRANCH”.Google Scholar
Thaduri, A. and Famurewa, S.M. (2020), “Evolution of Maintenance Processes in Industry 4.0”, in Dima, I., Martinetti, A., Demichela, M. and Singh, S. (Eds.), Applications and Challenges of Maintenance and Safety Engineering in Industry 4.0, IGI Global, pp. 4969.10.4018/978-1-7998-3904-0.ch003CrossRefGoogle Scholar
Wenninghoff, N. and Sandau, A. (2019), “Agentensystem zur Steigerung der Betriebsbereitschaft automatisierter Fahrzeuge”, in Marx Gómez, J., Solsbach, A. and Klenke, T. (Eds.), Smart Cities/Smart Regions – Technische, wirtschaftliche und gesellschaftliche Innovationen: Konferenzband zu den 10. BUIS-Tagen, 1st ed. 2019, pp. 325338.10.1007/978-3-658-25210-6_26CrossRefGoogle Scholar
White, G.E. and Ostwald, P.F. (1976), “Life cycle costing”, Management accounting, Vol. 57 No. 7, pp. 3942.Google Scholar