Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T15:23:02.190Z Has data issue: false hasContentIssue false

FURTHER DEVELOPMENT OF THE DESIGN PROCESS FOR HYBRID INDIVIDUAL IMPLANTS

Published online by Cambridge University Press:  19 June 2023

Martin Pendzik*
Affiliation:
TU Dresden;
Stefan Holtzhausen
Affiliation:
TU Dresden;
Sascha Heinemann
Affiliation:
Innotere GmbH
Kristin Paetzold
Affiliation:
TU Dresden;
*
Pendzik, Martin, TU Dresden, Germany, martin.pendzik@tu-dresden.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Additive manufacturing (AF) is characterised by a high degree of individuality and flexibility with regard to design and product layout. This enables the integration of different functions in a component. Due to these properties, AM has established itself in medical technology for the production of implants. Depending on the application, parameters such as resilience, biocompatibility and manufacturing restrictions play a varying role. So far, however, only limited research has been done on the design, manufacturing and application of hybrid implants (use of several materials). Although initial design and manufacturing guides exist, the problem of removing the hybrid implant from the shaping negative is hardly addressed.

The aim is to analyse and evaluate an existing procedure for the design of hybrid implants depending on individual requirements and to further develop it regarding the removability from the shaping negative. In this context, the extent to which the adhesive properties between the elements can be influenced by design changes is to be investigated.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

BIONIKA (2021), Oral and maxillofacial surgery. [online] BIONIKA. Available at: https://www.bionika.hu/en/oral-and-maxillofacial-surgery/ (accessed: March 23, 2021).Google Scholar
Evonos (2021), Schädelimplantate Evo-Shape mit hoher Biokompatibilität. [online] Evonos. Available at: https://www.evonos.de/products/evo_shape/ (accessed: January 13, 2021).Google Scholar
Habijan, T., Haberland, C., Meier, H., Frenzel, J., Wittsiepe, J., Wuwer, C., Greulich, C., Schildhauer, T. A. and Köller, M. (2013), “The biocompatibility of dense and porous Nickel–Titanium produced by selective laser melting”, Materials Science and Engineering: C, Vol. 38, pp. 419426. https://doi.org/10.1016/j.msec.2012.09.008CrossRefGoogle Scholar
Heinemann, S., Rössler, S., Lemm, M., Ruhnow, M. and Nies, B. (2013), “Properties of injectable ready-to-use calcium phosphate cement based on water-immiscible liquid”, Acta Biomaterialia 2013, 9(4), pp. 61996207. https://doi.org/10.1016/j.actbio.2012.12.017Google ScholarPubMed
Holtzhausen, S., Heinemann, S., Lemm, M. and Stelzer, R. (2019), “Printing of contour-adapted bone scaffolds based on calcium phosphate cements”, CARS 2019-Computer Assisted Radiology and Surgery Proceedings of the 33rd International Congress and Exhibition, Rennes, France, June 18-21, 2019. International journal of computer assisted radiology and surgery, Springer, 159160. https://doi.org/10.1007/s11548-019-01969-3CrossRefGoogle Scholar
INNOTERE (2021), INNOTERE Biomaterial Innovation for Tissue Engineering and Regeneration, [online] INNOTERE GmbH. Available at: https://www.innotere.de/, (accessed: April, 2021).Google Scholar
Kilian, D., Sembdner, P., Bretschneider, H., Ahlfeld, T., Mika, L., Lützner, J., Holtzhausen, S., Lode, A., Stelzer, R. and Gelinsky, M. (2021), “3D printing of patient-specific implants for osteochondral defects: workflow for an MRI-guided zonal design”, Bio-Design and Manufacturing (DGBM), July 21, 2021, Springer, pp. 818832. https://doi.org/10.1007/s42242-021-00153-4CrossRefGoogle Scholar
Lethaus, B., Safi, Y., Laak-Poort, M., Kloss-Brandstätter, A., Banki, F., Robbenmenke, C., Steinseifer, U. and Kessler, P. (2012), “Cranioplasty with Customized Titanium and PEEK Implants in a Mechanical Stress Model”, Journal of Neurotrauma, Vol. 29, No. 4, pp. 10771083. http://doi.org/10.1089/neu.2011.1794CrossRefGoogle Scholar
Loew, M. (2010), AE-Manual der Endoprothetik, Springer Berlin Heidelberg.CrossRefGoogle Scholar
Ng, Z. Y. and Nawaz, I. (2014), “Computer-Designed PEEK Implants”, Journal of Craniofacial Surgery, Vol. 25, No. 1, pp. e55e58. https://doi.org/10.1097/scs.0b013e3182a2f7b6CrossRefGoogle ScholarPubMed
OssDsign (2021), OssDsign, [online] Available at: https://www.ossdsign.com/home (accessed: April, 2021).Google Scholar
Pendzik, M., Mika, L., Scheibner, B., Holtzhausen, S. and Stelzer, R. (2021), “Entwicklung eines Prozesses zur Konstruktion von Hybrid-Implantaten für die Herstellung mittels additiver Fertigung”, 32nd DfX-Symposium, Tutzing, Germany, September 27-28, 2021, Ehemaligennetzwerk des Lehrstuhls für Konstruktionstechnik (KTmfk) Erlangen e.V. https://doi.org/10.35199/dfx2021.18CrossRefGoogle Scholar
Reitmaier, S., Kovtun, A., Schuelke, J., Kanter, B., Lemm, M., Hoess, A., Heinemann, S., Nies, B. and Ignatius, A. (2017), “Strontium(II) and Mechanical Loading Additively Augment Bone Formation in Calcium Phosphate Scaffolds”, Journal of Orthopaedic Research Society, Vol. 36, pp. 106117. https://doi.org/10.1002/jor.23623CrossRefGoogle ScholarPubMed
Roth, A. (2018), “Periprothetische Osteopenie”, Osteologie 2015, Vol. 24, No. 3, George Thieme Verlag. https://doi.org/10.1055/s-0037-1622063Google Scholar
Scheibner, B. (2019), Konstruktion, Fertigung und Evaluierung hybrider Implantate, Diploma thesis, TU Dresden.Google Scholar
Schiffner, S. (2019), Entwicklung von Konstruktionsprinzipien für individuelle Hybridimplantate, Diploma thesis, TU Dresden.Google Scholar
Schmitt, R. (2013), Werkstoffverhalten in biologischen Systemen, Springer, Berlin Heidelberg.Google Scholar
Schulz, M. C., Holtzhausen, S., Nies, B., Heinemann, S., Lauer, G. and Sembdner, P. (2019), “Three-dimensional plotted bone calcium-phosphate scaffolds for bone defect augmentation – a new option for regeneration?INTERNATIONAL OSTEOLOGY SYMPOSIUM BARCELONA, Barcelona, Spain, April 25–27, 2019.Google Scholar
Sembdner, P. (2017), Rechnergestützte Planung und Rekonstruktion für individuelle Langzeit-Knochenimplantate am Beispiel des Unterkiefers, Dissertation, TU Dresden.Google Scholar
Sembdner, P., Mika, L., Heerwald, S., Holtzhausen, S. and Stelzer, R. (2019), “Design of a parametric knee implant model based on Active Shape Model output data for individualized knee implants”, CARS 2019-Computer Assisted Radiology and Surgery Proceedings of the 33rd International Congress and Exhibition, Rennes, France, June 18-21, 2019. International journal of computer assisted radiology and surgery, Springer, 149150. https://doi.org/10.1007/s11548-019-01969-3CrossRefGoogle Scholar
Tidow, U. (2016), Erfassung, Analyse und Darstellung von Risikofaktoren für das Auftreten von Infektionen nach Implantation einer Kranioplastik zur Defektdeckung nach dekompressiver Kraniektomie, Dissertation, University of Lübeck.Google Scholar
Waldeyer, Anton and Streicher, Johannes (2012), Waldeyer - Anatomie des Menschen, De Gruyter.CrossRefGoogle Scholar
Wild, M., Schumacher, R., Mayer, K., Schkommodau, E., Thoma, D., Bredell, M., Gujer, A. K., Grätz, K. W. and Weber, F. E. (2013), “Bone Regeneration by the Osteoconductivity of Porous Titanium Implants Manufactured by Selective Laser Melting: A Histological and Micro Computed Tomography Study in the Rabbit”. Tissue Engineering, Part A, Vol. 19, No. 12, pp. 26452654 2013. https://doi.org/10.1089/ten.tea.2012.0753CrossRefGoogle ScholarPubMed
Wintermantel, E. und Ha, S.-W. (2009), Medizintechnik - Life Science Engineering, 4th Edition, Springer Berlin Heidelberg.CrossRefGoogle Scholar