Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T00:43:16.797Z Has data issue: false hasContentIssue false

Feedback thought at the intersection of systems and design science

Published online by Cambridge University Press:  16 May 2024

Igor Czermainski de Oliveira*
Affiliation:
Technical University of Denmark, DTU Construct, Denmark
Daniel Guzzo
Affiliation:
Technical University of Denmark, DTU Construct, Denmark
Daniela C. A. Pigosso
Affiliation:
Technical University of Denmark, DTU Construct, Denmark

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper explores the interplay of feedback principles in design and systems science. From their roots in engineering, biology, and economics, it investigates intersections between design, cybernetics and servomechanisms. The synthesis emphasizes the need for considering feedback in anticipating unintended consequences and proposes an integrative view reconciling fundamental assumptions from the different fields through simulation. This holistic approach underscores the pivotal role of feedback in understanding and addressing complex phenomena, such as rebound effects, in design science.

Type
Design Theory and Research Methods
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Abson, D.J., Fischer, J., Leventon, J., Newig, J., Schomerus, T., Vilsmaier, U., Von Wehrden, H., Abernethy, P., Ives, C.D., Jager, N.W. and Lang, D.J., 2017. Leverage points for sustainability transformation. Ambio, 46, pp.30-39. https://doi.org/10.1007/s13280-016-0800-yCrossRefGoogle Scholar
Ackoff, RL., 1981. Creating the Corporate Future. Wiley, New York.Google Scholar
Andreasen, M.M., 1980. Syntesemethoder på Systemgrundlag – Bidrag til en Konstruktionsteori. Lund University.Google Scholar
Andreasen, M.M., McAloone, T. and Mortensen, N.H., 2001. Multi-product development – platforms and modularization. A P* insight report. Technical University of Denmark.Google Scholar
Archer, L.B., 1964. Systematic method for designers. Design, pp.56-59.Google Scholar
Ashby, W.R., 1956. An Introduction to Cybernetics. Chapman & Hall.CrossRefGoogle Scholar
Bass, F.M., 1969. A new product growth for model consumer durables. Management science, 15(5), pp.215-227.CrossRefGoogle Scholar
Bateson, G., 1970. Form, substance and difference. Essential readings in biosemiotics, 501. https://doi.org/10.1287/mnsc.15.5.215CrossRefGoogle Scholar
Beer, S., 1966. Decision and Control: The meaning of operational. The meaning of operational research and management cybernetics. Wiley.Google Scholar
Beer, S., 1974. Massey Lectures, Thirteenth Series. Canadian Broadcasting Corporation.Google Scholar
Bertalanffy, L.V., 1968. General system theory: Foundations, development, applications. G. Braziller.Google Scholar
Cannon, W., 1932. The Wisdom of the Body. W. W. Norton.CrossRefGoogle Scholar
Ceschin, F., and Gaziulusoy, I., 2016. Evolution of design for sustainability: From product design to design for system innovations and transitions. Design Studies, 47, 118163. https://doi.org/10.1016/j.destud.2016.09.002CrossRefGoogle Scholar
Chavy-MacDonald, M.A., Oizumi, K. and Aoyama, K., 2019. Towards a generalized system dynamics model for product design & adoption. In Transdisciplinary Engineering for Complex Socio-technical Systems (pp. 455-464). IOS Press, https://dx.doi.org/10.3233/ATDE190152Google Scholar
Churchman, C.W., 1970. Operations research as a profession. Management science, 17(2), pp.B-37.CrossRefGoogle Scholar
Collste, D., Pedercini, M. and Cornell, S.E., 2017. Policy coherence to achieve the SDGs: using integrated simulation models to assess effective policies. Sustainability science, 12, pp.921-931. https://doi.org/10.1007/s11625-017-0457-xCrossRefGoogle Scholar
Deutsch, K.W., 1953. Nationalism and social communication: An inquiry into the foundations of nationality. MIT.Google Scholar
Deutsch, K.W., 1966. Nationalism and social communication: An inquiry into the foundations of nationality. MIT.Google Scholar
Forrester, J.W., 1958. Industrial dynamics: a major breakthrough for decision makers. Harvard business review, 36(4), pp.37-66.Google Scholar
Fuller, R.B., 1957. A comprehensive anticipatory design science. Royal Architectural Institute of Canada, 34(8), pp.357-61.Google Scholar
Fuller, R.B., 1982. Synergetics: explorations in the geometry of thinking. Estate of R. Buckminster Fuller.Google Scholar
Gaziulusoy, A.I., and Brezet, H., 2015. Design for system innovations and transitions: A conceptual framework integrating insights from sustainablity science and theories of system innovations and transitions. Journal of Cleaner Production, 108, 558568. https://doi.org/10.1016/j.jclepro.2015.06.066CrossRefGoogle Scholar
Geels, F.W., 2022. Causality and explanation in socio-technical transitions research: Mobilising epistemological insights from the wider social sciences. Research policy, 51(6), 104537. https://doi.org/10.1016/j.respol.2022.104537CrossRefGoogle Scholar
Georgescu-Roegen, N., 1971. The entropy law and the economic process. Harvard University Press.CrossRefGoogle Scholar
Gero, J.S., 1990. Design prototypes: a knowledge representation schema for design. AI magazine, 11(4), pp.26-26. https://doi.org/10.1609/aimag.v11i4.854CrossRefGoogle Scholar
Glanville, R., 2007. Try again. Fail again. Fail better: The cybernetics in design and the design in cybernetics. Kybernetes, 36(9/10), 1173-1206. https://doi.org/10.1108/03684920710827238CrossRefGoogle Scholar
Guzzo, D., Walrave, B. and Pigosso, D.C., 2023. Unveiling the dynamic complexity of rebound effects in sustainability transitions: Towards a system's perspective. Journal of Cleaner Production, p.137003. https://doi.org/10.1016/j.jclepro.2023.137003CrossRefGoogle Scholar
Guzzo, D., Walrave, B., Videira, N., Oliveira, I.C., and Pigosso, D.C., 2024. Towards a systemic view on rebound effects: Modelling the feedback loops of rebound mechanisms. Ecological Economics, 217, 108050. https://doi.org/10.1016/j.ecolecon.2023.108050CrossRefGoogle Scholar
Hansen, F., 1955. KONSTRUKTIONSSYSTEMATIK. Verlag Technik.Google Scholar
Hines, J., Malone, T., Gonçalves, P., Herman, G., Quimby, J., Murphy-Hoye, M., Rice, J., Patten, J. and Ishii, H., 2011. Construction by replacement: a new approach to simulation modeling. System Dynamics Review, 27(1), pp.64-90. https://doi.org/10.1002/sdr.437CrossRefGoogle Scholar
Hubka, V., 1967. Der grundlegende Algorithmus für die Lösung von Konstruktionsaufgaben. Internationales Wissenschaftliches Kolloquium der Technischen Hochschule Ilmenau, pp.6974.Google Scholar
Hubka, V., 1976. Darstellung beim Konstruieren. Theorie der Konstruktionsprozesse: Analyse der Konstruktionstätigkeit, pp.125-143.CrossRefGoogle Scholar
IEEE, 1996. Origins of the Servo-Motor. IEEE Industry Applications Magazine, vol. 2, no. 2, pp. 74-, March-April 1996, https://dx.doi.org/10.1109/MIA.1996.485765CrossRefGoogle Scholar
Jevons, W.S., 1865. The Coal Question; An Inquiry Concerning the Progress of the Nation, and the Probable Exhaustion of Our Coal Mines. Macmillan & Co.Google Scholar
Jones, P.H., 2014. Systemic design principles for complex social systems. Social systems and design, pp.91-128. https://doi.org/10.1007/978-4-431-54478-4_4CrossRefGoogle Scholar
Joore, P., and Brezet, H., 2015. A Multilevel Design Model: The mutual relationship between product-service system development and societal change processes. Journal of Cleaner Production, 97, 92105. https://doi.org/10.1016/j.jclepro.2014.06.043CrossRefGoogle Scholar
Lange, S., Kern, F., Peuckert, J. and Santarius, T., 2021. The Jevons paradox unravelled: A multi-level typology of rebound effects and mechanisms. Energy Research & Social Science, 74, p.101982. https://doi.org/10.1016/j.erss.2021.101982CrossRefGoogle Scholar
Lotka, A.J., 1925. Elements of physical biology. Williams & Wilkins.Google Scholar
Maier, F.H., 1998. New product diffusion models in innovation management—a system dynamics perspective. System Dynamics Review, 14(4), pp.285-308. https://doi.org/10.1002/(SICI)1099-1727(199824)14:4%3C285::AID-SDR153%3E3.0.CO;2-FCrossRefGoogle Scholar
March, J.G. and Simon, H.A., 1958. Organizations. John Wiley & Sons.Google Scholar
Maturana, H. and Varela, F., 1972. De máquinas y seres vivos. Editorial Universitaria.Google Scholar
Gray, McFralane, J., 1864. Arithmetic of Building Societies. Virtue Brothers & Co.Google Scholar
Mead, M., 1968. The Cybernetics of Cybernetics. In Systems, Purposive, edited by Heinz von Foerster, John D. White, Larry J. Peterson and John K. Russell. Spartan Books.Google Scholar
Meadows, D.H., Meadows, D.L., Randers, J. and Behrens III, W.W., 1972. The limits to growth. Club of Rome.Google Scholar
Meadows, D.H., 1976. The Unavoidable A Priori. International System Dynamics Conference.Google Scholar
Meadows, D.H, 1999. Leverage points. Places to Intervene in a System, 19, p.28.Google Scholar
Metic, J. and Pigosso, D.C., 2022. Research avenues for uncovering the rebound effects of the circular economy: A systematic literature review. Journal of Cleaner Production, p.133133. https://doi.org/10.1016/j.ecolecon.2023.108050CrossRefGoogle Scholar
Midgley, G., 2000. Systemic intervention (pp. 113-133). Springer.CrossRefGoogle Scholar
Mortensen, N.H., 1999. Design Modelling in a Designer's Workbench: Contribution to a Design Language. Technical University of Denmark.Google Scholar
Oliva, R., 2003. Model calibration as a testing strategy for system dynamics models. European Journal of Operational Research, 151(3), pp.552-568. https://doi.org/10.1016/S0377-2217(02)00622-7CrossRefGoogle Scholar
Pahl, G. and Beitz, W., 1996. Engineering design: a systematic approach. Springer-Verlag.CrossRefGoogle Scholar
Pohl, C., Pearce, B., Mader, M., Senn, L., and Krütli, P., 2020. Integrating systems and design thinking in transdisciplinary case studies. Gaia, 29(4), 258266. https://doi.org/10.14512/GAIA.29.4.11CrossRefGoogle Scholar
Pourdehnad, J., Wexler, E.R., and Wilson, D.V., 2011. Systems & design thinking: A conceptual framework for their integration. Proceedings of the 55th Annual Meeting of the ISSS - 2011.Google Scholar
Richardson, G.P., 1991. Feedback thought in social science and systems theory. University of Pennsylvania.Google Scholar
Richardson, G.P., 1991b. System dynamics: Simulation for policy analysis from a feedback perspective. In Qualitative simulation modeling and analysis (pp. 144-169). New York, NY: Springer New York.Google Scholar
Richardson, G.P., 2011. Reflections on the foundations of system dynamics. System dynamics review, 27(3), pp.219-243. https://doi.org/10.1002/sdr.462CrossRefGoogle Scholar
Rittel, H.W. and Webber, M.M., 1973. Dilemmas in a general theory of planning. Policy sciences, 4(2),pp.155-169.CrossRefGoogle Scholar
Rogers, E.M., 1962. Diffusion of innovations. Free Press.Google Scholar
Rosenblueth, A., Wiener, N. and Bigelow, J., 1943. Behavior, purpose and teleology. Philosophy of science, 10(1), pp.18-24.CrossRefGoogle Scholar
Schon, D., 1983. Becoming a reflective practitioner. How professionals think in action. London: Temple Smith.Google Scholar
Simon, H.A., 1952. On the application of servomechanism theory in the study of production control. Econometrica: Journal of the Econometric Society, pp.247-268.CrossRefGoogle Scholar
Simon, H.A., 1954, Some Strategic Considerations in the Construction of Social Science Models. In P. Lazarsfeld, ed., Mathematical Thinking in the Social Sciences. Free Press.Google Scholar
Simon, H.A., 1955. A behavioral model of rational choice. The quarterly journal of economics, pp.99-118.CrossRefGoogle Scholar
Simon, H.A., 1969. The sciences of the artificial. MIT press.Google Scholar
Ulrich, W., 1987. Critical heuristics of social systems design. European Journal of Operational Research, 31(3), pp.276-283. https://doi.org/10.1016/0377-2217(87)90036-1CrossRefGoogle Scholar
Weber, C., 2014. Modelling products and product development based on characteristics and properties. In An anthology of theories and models of design: philosophy, approaches and empirical explorations (pp. 327-352). London: Springer London.Google Scholar
Wiener, N., 1948. Cybernetics. Scientific American, 179(5), pp.14-19.CrossRefGoogle ScholarPubMed
Willis, A.M., 2006. Ontological designing. Design philosophy papers, 4(2), pp.69-92. https://doi.org/10.2752/144871306X13966268131514CrossRefGoogle Scholar
Wynn, D.C., and Maier, A.M. (2022). Feedback systems in the design and development process. Research in Engineering Design, 33(3), 273-306. https://doi.org/10.1007/s00163-022-00386-zCrossRefGoogle Scholar