Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T22:25:27.103Z Has data issue: false hasContentIssue false

DERIVATION OF A METHOD DNA FOR THE UNIFIED DESCRIPTION OF METHODICAL PROCEDURES IN PRODUCT DEVELOPMENT

Published online by Cambridge University Press:  19 June 2023

Florian Reichelt*
Affiliation:
University of Stuttgart - Institute for Engineering Design and Industrial Design;
Dietmar Traub
Affiliation:
PPM – Unternehmensberatung
Thomas Maier
Affiliation:
University of Stuttgart - Institute for Engineering Design and Industrial Design;
*
Reichelt, Florian, University of Stuttgart - Institute for Engineering Design and Industrial Design, Germany, florian.reichelt@iktd.uni-stuttgart.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The number of publications on methods in product development is increasing constantly. In addition to scientific models, method guidelines exist in practice to support the selection of suitable methods. When looking more closely, it is noticeable that new methods are not new developments of methodical principles, but rather adaptations and summaries of known methods to specific application areas.Although approaches to standardize methods exist, they are usually formulated too abstractly to be useful to project managers as a support for method decision making.In our contribution, we analyse common methods of technical product development regarding similarities in content and time. In doing so, we were able to derive a method DNA on the basis of which all methods can be described and, above all, distinguished in a verifiable manner. In addition to essential activity blocks, the DNA also includes the description of temporal sequences, which in particular enables a differentiation between agile and classic methods. Ultimately, the method DNA not only offers the chance to make methodical work comprehensible, but also the possibility to select methods specifically for upcoming development steps arises through the classification option.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Albers, A., Heimicke, J., Spadinger, M., Reiss, N., Breitschuh, J., Richter, T., Bursac, N. and Marthaler, F. (2019a), “A systematic approach to situation-adequate mechatronic system development by ASD - Agile Systems Design”, Procedia CIRP, vol. 84, pp. 10151022. https://doi.org/10.1016/j.procir.2019.03.312.CrossRefGoogle Scholar
Albers, A., Hirschter, T., Fahl, J., Reinemann, J., Spadinger, M., Hünemeyer, S. and Heimicke, J. (2019b), “Identification of Indicators for the Selection of Agile, Sequential and Hybrid Approaches in Product Development”, Procedia CIRP, vol. 84, pp. 838847. https://doi.org/10.1016/j.procir.2019.04.229.CrossRefGoogle Scholar
Albers, A., Saak, M., Burkardt, N., & Schweinberger, D. (2002), “Gezielte Problemlösung bei der Produktentwicklung mit Hilfe der SPALTEN-Methode”, Technische Universität Illmenau, pp. 8384.Google Scholar
Beier, F. M. (2013), “Untersuchungen zum hybriden Designprozess in der technischen Produktentwicklung”, Stuttgart, University of Stuttgart, Disstation.Google Scholar
Bender, B. and Gericke, K. (2016), “Teil 3- Kap. 1 Entwicklungsprozesse”, In: Lindemann, U. (ed) Handbuch Produktentwicklung, München, Hanser, pp. 401424.Google Scholar
Bender, B., & Marion, S. (2016), “Dimensions of product development success”, In: Proceedings of the DESIGN 2016 14th International Design Conference, Dubrovnik, Croatia, pp. 14551464.Google Scholar
Birkhofer, H. (2008), “Tidying Up Design Methods - An Approach Using Elementary Design Methods”, In: Proceedings DESIGN 2008, the 10th International Design Conference, Dubrovnik, Croatia, pp. 18.Google Scholar
Birkhofer, H., Jänsch, J., & Kloberdanz, H. (2005), “An extensive and detailed view of the application of design methods and methodology in industry”, In: Proceedings ICED 05, the 15th International Conference on Engineering Design, Melbourne, Australia, pp. 276277.Google Scholar
Blessing, L. T. M. (1994), “A process-based approach to computer-supported engineering design”, Enschede, University of Twente.Google Scholar
Boehm, B. and Turner, R. (2005), “Management Challenges to Implementing Agile Processes in Traditional Development Organizations”, IEEE Software, Vol. 22 No. 5, pp. 3039. https://doi.org/10.1109/MS.2005.129.CrossRefGoogle Scholar
Böhmer, A.I., Beckmann, A. and Lindemann, U. (2015), “Open Innovation Ecosystem - Makerspaces within an Agile Innovation Process”, in Huizingh, E., Conn, S. and Bitran, I. (Eds.), Changing the innovation landscape: ISPIM Innovation Summit Brisbane, Australia, 6-9 December 2015, ISPIM the International Society for Innovation Management, Worsley, Manchester, UK.Google Scholar
Clarkson, J., & Eckert, C. (Eds.). (2005), “Design process improvement: A review of current practice”, Springer.CrossRefGoogle Scholar
Cooper, R.G. (2007), “Managing Technology Development Projects”, IEEE Engineering Management Review,Vol. 35 No. 01, pp. 6776. https://doi.org/10.1080/08956308.2006.11657405..CrossRefGoogle Scholar
Cross, N. (2007), “Designerly ways of knowing”, Birkhäuser.Google Scholar
Deming, W. E. (1986), “Out of the Crisis”, Cambridge, MA, Massachusetts Institute of Technology.Google Scholar
Ehrlenspiel, K., & Meerkamm, H. (2013), “Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit”, Hanser eLibrary, Hanser Verlag. https://doi.org/10.3139/9783446436275CrossRefGoogle Scholar
Hacker, W. (2002), “Konstruktives entwickeln: Psychologische Grundlagen. Denken in der Produktentwicklung: Psychologische Unterstützung der frühen Phasen”, Zürich, Switzerland, pp. 1126.Google Scholar
Heimicke, J., Chen, R., & Albers, A. (2020), “Agile Meets Plan-Driven – Hybrid Approaches in Product Development: A Systematic Literature Review”, In: Proceedings of the Design Society: DESIGN Conference 2020, pp. 577586. https://doi.org/10.1017/dsd.2020.259CrossRefGoogle Scholar
ISO/IEC/IEEEInternational Standard - Systems and software engineering System life cycle processes”, In: ISO/IEC 15288:2008(E) IEEE Std 15288-2008 (Revision of IEEE Std 15288-2004), 31 Jan. 2008. https://doi.org/10.1109/IEEESTD.2008.6093923CrossRefGoogle Scholar
Laukemann, A., Roth, D., & Binz, H. (2018), “How Much Knowledge Management is Hidden in Design Methods?”, In: Design Conference Proceedings, Proceedings of the DESIGN 2018 15th International Design Conference Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia, pp. 16071618. https://doi.org/10.21278/idc.2018.0406CrossRefGoogle Scholar
Lindemann, U. (2009), “Methodische Entwicklung technischer Produkte: Methoden flexibel und situationsgerecht anwenden” (3. Edition.), VDI-Book, Springer.CrossRefGoogle Scholar
Lindemann, U. (Ed.). (2016), “Handbuch Produktentwicklung”, Hanser.CrossRefGoogle Scholar
Lodgaard, E., & Aasland, K. E. (2011), “An examination of the application of plan-do-check-act cycle in product development”, In: Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society through Engineering Design, Lyngby/Copenhagen, Denmark, 15.-19.08. 2011, pp. 4755.Google Scholar
Meboldt, M. (2008), “Mentale und formale Modellbildung in der Produktentstehung - als Beitrag zum integrierten Produktentstehungs-Modell (iPeM)”, Dissertation, Karlsruhe. KIT.Google Scholar
Miller, G. A., Galanter, E., & Pribram, K. H. (1960), “The unit of analysis”.CrossRefGoogle Scholar
Reichelt, F., Holder, D. and Maier, T. (2021), “Entwicklung einer situativen Entwicklungsmethodik -ein hybrider Ansatz zur agilen Transformation im Technischen Design”, In: Binz, H., Bertsche, B., Bauer, W., Spath, D. and Roth, D. (Eds.), Stuttgarter Symposium für Produktentwicklung SSP 2021 Stuttgart, 20. May 2021, University of Stuttgart, pp. 112.Google Scholar
Reichelt, F., Blank, D., Holder, D., & Maier, T. (2022a), “New Holistic Approach Towards a Technology-Driven Development-Model in Automotive”, In: Proceedings of the Design Society DESIGN Conference 2022, Dubrovnik, Croatia, pp. 241252.CrossRefGoogle Scholar
Reichelt, F., Holder, D., Bosch, P. M., & Maier, T. (2022b), “How to Support the Appropriate Method Selection in Design-Technology-Convergence?”, In: Human Factors in Management and Leadership, Applied Human Factors and Ergonomics (AHFE 2022), pp. 55- 68.CrossRefGoogle Scholar
Sawyer, R. K. (2012), “The science of human innovation: Explaining creativity”, New York, NY.Google Scholar
Schwaber, K., & Sutherland, J. (2021), “The 2020 SCRUM guide”, Retrieved May, 6, 2021.Google Scholar
Taylor, T., & Ahmed-Kristensen, S. (2016), “Global product development: KPI selection support”, In: Proceedings of International Design Conference, Dubrovnik, Croatia, pp. 16151624.Google Scholar
Timinger, H. and Seel, C. (2016), “Ein Ordnungsrahmen für adaptives hybrides Projektmanagement.”, GPMMagazin PMaktuell, 04/2016 No. 04, pp. 5561.Google Scholar
Vahs, D., & Burmester, R. (2005), “Innovationsmanagement: Von der Produktidee zur erfolgreichen Vermarktung”, 3. Edition, Schäffer-Poeschel, Stuttgart.Google Scholar
Vajna, S. (2005), “Workflow for design”, In: Clarkson, J. & Eckert, C. (Eds.), Design process improvement: A review of current practice, Springer, pp. 366385. https://doi.org/10.1007/978-1-84628-061-0_16CrossRefGoogle Scholar
Verein Deutscher Ingenieure e.V. (2019), “VDI 2221 -Design of technical products and systems Model of product design - Part 1”, VDI-Guideline VDI2221, November 2019.Google Scholar
Verein Deutscher Ingenieure e.V. (2021), “VDI 2206 - Development of mechatronic and cyber-physical systems”, VDI-Guideline VDI2221, November 2021.Google Scholar
Wallas, G. (1926), “The Art of Thought”, 2nd ed., Butler & Tanner Ltd.Google Scholar
Wynn, D., & Clarkson, J. (2005), “Models of designing”, In: Clarkson, J. & Eckert, C. (Eds.), Design process improvement: A review of current practice, Springer, pp. 3459. https://doi.org/10.1007/978-1-84628-061-0_2CrossRefGoogle Scholar
Wysocki, R. K. (2019), “Effective project management: Traditional, agile, extreme, hybrid”, Eighth edition, Wiley.CrossRefGoogle Scholar