Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T12:50:22.625Z Has data issue: false hasContentIssue false

CONSIDERING ENGINEERING ACTIVITIES AND PRODUCT CHARACTERISTICS TO ACHIEVE MATERIAL CIRCULARITY BY DESIGN

Published online by Cambridge University Press:  19 June 2023

Iris Gräßler
Affiliation:
Paderbron University
Philipp Hesse*
Affiliation:
Paderbron University
*
Hesse, Philipp, Paderbron University, Germany, philipp.hesse@hni.upb.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To select design guidelines engineers have to identify relevant from a bewildering amount of design guidelines. In this paper, a rule-based method for selecting design guidelines for material circularity selection is presented. For this purpose, a generic Product Life Cycle model is detailed with regard to Multi Material cycles (gPLC-MM). The presented method is divided into four steps. Core of the presented method is the comparison of circular product strategies with product life phases and material recovery processes. Engineering activities and increments of the product architecture are used to identify design guidelines. The results show that through the material circularity-oriented design guideline identification method, the product architecture is designed for different processes and technologies, to recover materials. The method allows engineers to select guidelines in a more targeted and consolidated way in sustainability-friendly product engineering.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Alvarez-de-los-Mozos, E. and Renteria, A. (2017), “Collaborative Robots in e-waste Management”, Procedia Manufacturing 11, Vol. 11, pp. 5562. https://doi.org/10.1016/j.promfg.2017.07.133CrossRefGoogle Scholar
Bauer, S. (2003), “Design for X. Ansätze zur Definition und Strukturierung”, 14. Symposium DfX, Neukirchen.Google Scholar
Bilitewski, B., Wagner, J. and Reichenbach, J. (2018), Bewährte Verfahren zur kommunalen Abfallbewirtschaftung, Umweltbundesamt, Dessau-Roßlau.Google Scholar
Bovea, M.D. and Pérez-Belis, V. (2018), “Identifying design guidelines to meet the circular economy principles: A case study on electric and electronic equipment”, Journal of Environmental Management, Vol. 228, pp. 483494. https://doi.org/10.1016/j.jenvman.2018.08.014CrossRefGoogle ScholarPubMed
Butenko, V., Wilwer, J., Spadinger, M. and Albers, A. (2017), “A Qualitative Study to Identify the Need and Requirements on further Development of Design Guidelines for Fibre-Reinforced Composites”, International Conference on Engineering Design, Canada, pp. 309318.Google Scholar
Calkins, D.E., Egging, N. and Scholz, C. (2000), “Knowledge-Based Engineering (KBE) Design Methodology at the Undergraduate and Graduate Levels”, International Journal of Engineering Education, pp. 2138.Google Scholar
Chatterjee, S. and Kumar, K. (2009), “Effective electronic waste management and recycling process involving formal and non-formal sectors”, International Journal of Physical Sciences, pp. 893905.Google Scholar
Chiu, M.-C. and Okudan, G.E. (2010), “Evolution of Design for X Tools Applicable to Design Stages: A Literature Review. A Literature Review”, International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Canada. https://doi.org/10.1115/DETC2010-29091CrossRefGoogle Scholar
Tena, Diaz, Schoeggl, A., Reyes, J.-P., and Baumgartner, T., R.J. (2021), “Exploring Sustainable Product Development Processes for a Circular Economy through Morphological Analysis”, International Conference on Engineering Design, Vol. 1, pp. 14911499. https://doi.org/10.1017/pds.2021.410CrossRefGoogle Scholar
Dowie, T. (1994), “Green Design”, World Class Design to Manufacture, Vol. 1, pp. 3238. https://doi.org/10.1108/09642369210063045CrossRefGoogle Scholar
European Parliament, “directive 2009/125/EG. establishing a framework for the setting of ecodesign requirements for energy-related products”, Official Journal of the European Union 2009.Google Scholar
Faerber, M., Jochaud, F., Stöber, S.J. and Meerkamm, H. (2008), “Knowledge Oriented Process Management For DfX”, International Design Conference, pp. 777784.Google Scholar
Fiksel, J. (2009), Design for environment: a guide to sustainable product development, McGraw-Hill, New York.Google Scholar
Freund, T. (2018), “Konstruktionshinweise zur Beherrschung von Unsicherheit in technischen Systemen”, Dissertation, Technische Universität Darmstadt, Darmstadt, 2018.Google Scholar
Go, T.F., Wahab, D.A. and Hishamuddin, H. (2015), “Multiple generation life-cycles for product sustainability”, Journal of Cleaner Production, Vol. 95, pp. 1629. https://doi.org/10.1016/j.jclepro.2015.02.065CrossRefGoogle Scholar
Gräßler, I. and Hentze, J. (2020), “The new V-Model of VDI 2206 and its validation”, Automatisierungstechnik, Vol. 68, pp. 312324. https://doi.org/10.1515/auto-2020-0015CrossRefGoogle Scholar
Gräßler, I., Scholle, P. and Pottebaum, J. (2017), “Integrated process and data model for applying scenario-technique in requirements engineering”, International Conference on Engineering Design, pp. 261270.Google Scholar
Gräßler, I. and Taplick, P. (2019), “Supporting Creativity with Virtual Reality Technology”, International Conference on Engineering Design, Vol. 1, pp. 20112020. https://doi.org/10.1017/dsi.2019.207CrossRefGoogle Scholar
Gräßler, I. (2017), “A new V-Model for interdisciplinary product engineering”, Engineering for a changing world.Google Scholar
Gräßler, I., Dattner, M. and Bothen, M. (2018), “Main feature list as core success criteria of organizing requirements elicitation”, R&D Management Conference, pp. 116. https://doi.org/10.1515/auto-2020-0015CrossRefGoogle Scholar
Gräßler, I., Hentze, J. and Yang, X. (2016), “Eleven Potentials for Mechatronic V-Model”, International Conference Production Engineering, pp. 257268.Google Scholar
Gräßler, I. and Hesse, P. (2021), “Digitaler Zwilling zur Gestaltung der Prozesse im End-of-Life. Produktdaten für das Recycling einer Produktinstanz”, Sustainability Management for Industries: Digitalisierung im Kontext von Nachhaltigkeit und Klimawandel, Vol. 9, Nomos Verlagsgesellschaft, Baden-Baden, pp. 135148. https://doi.org/10.5771/9783957102966-135CrossRefGoogle Scholar
Gräßler, I. and Oleff, C. (2022), Systems Engineering, 1.th ed., Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64517-8CrossRefGoogle Scholar
Gräßler, I. and Pottebaum, J. (2021), “Generic Product Lifecycle Model: A Holistic and Adaptable Approach for Multi-Disciplinary Product–Service Systems”, Applied Sciences, Vol. 11, pp. 424. https://doi.org/10.3390/app11104516CrossRefGoogle Scholar
Gräßler, I., Wiechel, D. and Pottebaum, J. (2021), “Role model of model-based systems engineering application”, 19th Drive Train Technology Conference, Vol. 1097, p. 12003. https://doi.org/10.1088/1757-899X/1097/1/012003CrossRefGoogle Scholar
Gräßler, I. and Yang, X. (2016), “Interdisciplinary Development of Production Systems Using Systems Engineering”, Procedia CIRP, Vol. 50, pp. 653658. https://doi.org/10.1016/j.procir.2016.05.008CrossRefGoogle Scholar
Hepperle, C. (2013), “Planung lebenszyklusgerechter Leistungsbündel”, Dissertation, Technische Universität München, München, 2013.Google Scholar
Hribernik, K.A., Stietencron, M. von, Hans, C. and Thoben, K.-D. (2011), “Intelligent Products to Support Closed-loop Reverse Logistics”, Proceedings of 18th CIRP International Conference on Life Cycle Engineering, pp. 486491. https://doi.org/10.1007/978-3-642-19692-8_84CrossRefGoogle Scholar
Ijomah, W.L. and Chiodo, J.D. (2010), “Application of active disassembly to extend profitable remanufacturing in small electrical and electronic products”, International Journal of Sustainable Engineering, Vol. 3, pp. 246257. https://doi.org/10.1080/19397038.2010.511298CrossRefGoogle Scholar
Isaksson, O. and Eckert, C. (2020), Product Development 2040: Technologies are just as good as the Designer's ability to integrate them. https://doi.org/10.35199/report.pd2040CrossRefGoogle Scholar
Itani, A., Ahmad, R. and Al-Hussein, M. (2019), “A Collaborative Scheme for DFX Techniques in Concurrent Engineering Mitigated with Total Design Activity Model”, Proceeding of the Modular and Offsite Construction Summit, pp. 18. https://doi.org/10.29173/mocs70CrossRefGoogle Scholar
Krause, D., Vietor, T., Inkermann, D., Hanna, M., Richter, T. and Wortmann, N. (2021), “Produktarchitektur”, Pahl/Beitz Konstruktionslehre, 9.th ed., Springer, Berlin, pp. 335393. https://doi.org/10.1007/978-3-662-57303-7_12CrossRefGoogle Scholar
Machi, L.A. and McEvoy, B.T. (2012), The Literature Review: Six Steps to Success, 2.th ed., Corwin Press.Google Scholar
Matthiesen, S. (2002), “Ein Beitrag zur Basisdefinition des Elementmodells “Wirkflächenpaare & Leitstützstrukturen” zum Zusammenhang von Funktion und Gestalt technischer Systeme”, 2002.Google Scholar
McAloone, T.C. and Pigosso, D.C.A. (2021), “Ökodesign”, Pahl/Beitz Konstruktionslehre, 9.th ed., Springer, Berlin, Heidelberg, pp. 9751021. https://doi.org/10.1007/978-3-662-57303-7_22CrossRefGoogle Scholar
Memon, M.A. (2010), “Integrated solid waste management based on the 3R approach”, Journal of Material Cycles and Waste Management, Vol. 12, pp. 3040. https://doi.org/10.1007/s10163-009-0274-0CrossRefGoogle Scholar
Mendes Campolina, J., São Leandro Sigrist, C., Faulstich de Paiva, J.M., Oliveira Nunes, A. and da Silva Moris, V.A. (2017), “A study on the environmental aspects of WEEE plastic recycling in a Brazilian company”, International Journal of Life Cycle Assess, Vol. 22, pp. 19571968. https://doi.org/10.1007/s11367-017-1282-2CrossRefGoogle Scholar
Milios, L., Holm Christensen, L., McKinnon, D., Christensen, C., Rasch, M.K. and Hallstrøm Eriksen, M. (2018), “Plastic recycling in the Nordics: A value chain market analysis”, Waste Management, pp. 180189. https://doi.org/10.1016/j.wasman.2018.03.034CrossRefGoogle Scholar
Oh, S. (2017), “From an Ecodesign Guide to a Sustainable Design Guide Complementing Social Aspects of Sustainable Product Design Guidelines”, Archives of Design Research, Vol. 30, pp. 4764. https://doi.org/10.15187/adr.2017.05.30.2.47CrossRefGoogle Scholar
Okorie, O., Salonitis, K., Charnley, F., Moreno, M., Turner, C. and Tiwari, A. (2018), “Digitisation and the Circular Economy. A Review of Current Research and Future Trends”, energies, Vol. 11, p. 3009. https://doi.org/10.3390/en11113009CrossRefGoogle Scholar
Pahl, G., Beitz, W., Feldhusen, J. and Grote, K.-H. (2007), Engineering Design, 3.th ed., Springer, London.CrossRefGoogle Scholar
Pan, Y. and Li, H. (2016), “Sustainability evaluation of end-of-life vehicle recycling based on emergy analysis”, Journal of Cleaner Production, Vol. 131, pp. 219227. https://doi.org/10.1016/j.jclepro.2016.05.045CrossRefGoogle Scholar
Phuluwa, H.S., Daniyan, I. and Mpofu, K. (2021), “Development of a sustainable decision framework for the implementation of end-of-life (EoL) options for the railcar industry”, Enironment, Deelopment and Sustainability, Vol. 23, pp. 94339453. https://doi.org/10.1007/s10668-020-01035-yCrossRefGoogle Scholar
Ponn, J. and Lindemann, U. (2011), Konzeptentwicklung und Gestaltung technischer Produkte, Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20580-4CrossRefGoogle Scholar
Weege, Rolf-Dieter (1980), “Recyclinggerechtes Konstruieren”, Dissertation, Universität Paderborn.Google Scholar
Sarc, R., Curtis, A., Kandlbauer, L., Khodier, K., Lorber, K.E. and Pomberger, R. (2019), “Digitalisation and intelligent robotics in value chain of circular economy oriented waste management - A review”, Waste Management, Vol. 95, pp. 476492. https://doi.org/10.1016/j.wasman.2019.06.035CrossRefGoogle Scholar
Shahbazi, S. and Jönbrink, A.K. (2020), “Design Guidelines to Develop Circular Products: Action Research on Nordic Industry”, Sustainability, Vol. 12, pp. 114. https://doi.org/10.3390/su12093679CrossRefGoogle Scholar
Sim, S.K. and Duffy, A.H.B. (2003), “Towards an ontology of generic engineering design activities”, Research in Engineering Design, Vol. 14, pp. 200223. https://doi.org/10.1007/s00163-003-0037-1CrossRefGoogle Scholar
Soo, V.K., Compston, P. and Doolan, M. (2015), “Interaction between New Car Design and Recycling Impact on Life Cycle Assessment”, the 22nd CIRP Conference on Life Cycle Engineering, Vol. 29, pp. 426431. https://doi.org/10.1016/j.procir.2015.02.055CrossRefGoogle Scholar
Sundin, E., Elo, K. and Mien Lee, H. (2012), “Design for automatic end-of-life processes”, Assembly Automation, Vol. 32, pp. 389398. https://doi.org/10.1108/01445151211262447CrossRefGoogle Scholar
Ulrich, H. (1981), “Die Betriebswirtschaftslehre als anwendungsorientierte Sozialwissenschaft”, Die Führung des Betriebs, Poeschel Verlag, Stuttgart, pp. 127.Google Scholar
United Nations Environment Programme (UNEP) (2009), “Developing Integrated Solid Waste Management Plan. Training Manual”.Google Scholar
Vajna, S. (2020), Integrated Design Engineering: Interdisciplinary and Holistic Product Development, Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-19357-7CrossRefGoogle Scholar
van Buren, N., Demmers, M., van der Heijden, R. and Witlox, F. (2016), “Towards a Circular Economy: The Role of Dutch Logistics Industries and Governments”, Sustainability, Vol. 8, pp. 117. https://doi.org/10.3390/su8070647CrossRefGoogle Scholar
Verein Deutscher Ingenieure (2004), Methodisches Entwerfen technischer Produkte, ICS 03.100.40 No. 2223, Beuth-Verlag GmbH, Berlin.Google Scholar
Verein Deutscher Ingenieure (2019), Design of technical products and systems, ICS 03.100.40 No. 2221, Beuth Verlag, Berlin.Google Scholar
Verein Deutscher Ingenieure (2021), Development of mechatronic and cyber-physical systems, ICS 03.100.40,31.220.01,39.020 No. 2206, Beuth Verlag, Düsseldorf.Google Scholar
Welp, E.G. and Lindemann, U. (1998), “Handlungshilfen für das recycling- und instandhaltungsgerechte Konstruieren”, Springer, Berlin, pp. 595610.CrossRefGoogle Scholar
Zimek, M. and Baumgartner, R. (2017), “Corporate sustainability activities and sustainability performance of first and second order”, 18th European Roundtable on Sustainable Consumption and Production Conference.Google Scholar