Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T23:57:17.377Z Has data issue: false hasContentIssue false

ADDITIVE REFURBISHMENT OF A VIBRATION-LOADED STRUCTURAL COMPONENT

Published online by Cambridge University Press:  27 July 2021

Nicola Viktoria Ganter*
Affiliation:
Leibniz University Hannover
Tobias Ehlers
Affiliation:
Leibniz University Hannover
Paul Christoph Gembarski
Affiliation:
Leibniz University Hannover
Roland Lachmayer
Affiliation:
Leibniz University Hannover
*
Ganter, Nicola Viktoria, Leibniz University Hannover, Institute of Product Development, Germany, ganter@ipeg.uni-hannover.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the event of damage to additively manufactured components whose shape cannot be produced by machining, an additive repair can potentially be not only ecologically but also ecologically more favorable than the production of a new component. In addition, a number of hurdles that otherwise often impede the use of additive repair, e.g. the availability of the material of the damaged component for the additive process, are eliminated. As far as the authors are aware, this publication is the first to present a process for the additive refurbishment of additively manufactured components using the example of a wheel carrier. In this context, the possibility of increasing the fatigue strength of a structural component in refurbishment is discussed for the first time. To increase the fatigue strength of the wheel carrier, the chosen approach is to integrate the effect of particle damping into the component. Particularly in the case of components subjected to bending stresses, the effect of particle damping can be integrated into the component's interior without having to accept a significant loss of strength.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Andersson, O., Graichen, A., Brodin, H. and Navrotsky, V. (2017), “Developing Additive Manufacturing Technology for Burner Repair”, Journal of Engineering for Gas Turbines and Power, Vol. 139 No. 3. http://doi.org/10.1115/1.4034235.CrossRefGoogle Scholar
Birger, E.M., Moskvitin, G.V., Polyakov, A.N. and Arkhipov, V.E. (2011), “Industrial laser cladding: current state and future”, Welding International, Vol. 25 No. 3, pp. 234243. http://doi.org/10.1080/09507116.2010.540880.CrossRefGoogle Scholar
Centerline (2012), “SST Cold Spray for Rapid Prototyping of Engineering Changes. SST Case Study”, available at: https://www.supersonicspray.com/uploads/documents/Add-Sensor-Bosses-on-Engine-Block-Case-Study-SST-CS-003-PR-1_0-0312.pdf.Google Scholar
Ehlers, T. and Lachmayer, R. (2020), “Einsatz additiv gefertigter Partikeldämpfer – eine Übersicht”, in Lachmayer, R., Rettschlag, K. and Kaierle, S. (Eds.), Konstruktion für die Additive Fertigung 2019, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 123142. http://doi.org/10.1007/978-3-662-61149-4_9.CrossRefGoogle Scholar
Ehlers, T. and Lachmayer, R. (2021), “Design of a motorcycle triple clamp optimised for stiffness and damping”, in Pfingstl, S., Horoschenkoff, A., Höfer, P. and Zimmermann, M. (Eds.), Proceedings of the Munich Symposium on Lightweight Design 2020: Tagungsband zum Münchner Leichtbauseminar 2020, Springer Vieweg.Google Scholar
Ehlers, T., Lachmayer, R., Vajna, S. and Halle, T. (2020), “Producibility”, in Vajna, S. (Ed.), Integrated Design Engineering, Springer International Publishing, Cham, pp. 287323. http://doi.org/10.1007/978-3-030-19357-7_9.CrossRefGoogle Scholar
Ehlers, T., Tatzko, S., Wallaschek, J. and Lachmayer, R. (2021), “Design of particle dampers for additive manufacturing”, Additive Manufacturing, Vol. 38, p. 101752. http://doi.org/10.1016/j.addma.2020.101752.CrossRefGoogle Scholar
Fowler, B.L., Flint, E.M. and Olson, S.E. (2000), “Effectiveness and predictability of particle damping”, in Hyde, T.T. (Ed.), Smart Structures and Materials 2000: Damping and Isolation, Monday 6 March 2000, Newport Beach, CA, SPIE, pp. 356367. http://doi.org/10.1117/12.384576.Google Scholar
Friend, R.D. and Kinra, V.K. (2000), “Particle Impact Damping”, Journal of Sound and Vibration, Vol. 233 No. 1, pp. 93118. http://doi.org/10.1006/jsvi.1999.2795.CrossRefGoogle Scholar
Gasser, A., Backes, G., Kelbassa, I., Weisheit, A. and Wissenbach, K. (2010), “Laser Additive Manufacturing: Laser Metal Deposition (LMD) and Selective Laser Melting (SLM) in Turbo-Engine Applications”, Laser Technik Journal, 2010, pp. 5863, available at: https://onlinelibrary.wiley.com/doi/pdf/10.1002/latj.201090029.CrossRefGoogle Scholar
Jhavar, S., Paul, C.P. and Jain, N.K. (2013), “Causes of failure and repairing options for dies and molds: A review”, Engineering Failure Analysis, 2013, pp. 519535. http://doi.org/10.1016/j.engfailanal.2013.09.006.CrossRefGoogle Scholar
Künneke, T. and Zimmer, D. (2017), “Funktionsintegration additiv gefertigter Dämpfungsstrukturen bei Biegeschwingungen”, in Richard, H.A., Schramm, B. and Zipsner, T. (Eds.), Additive Fertigung von Bauteilen und Strukturen, Springer Fachmedien Wiesbaden, Wiesbaden, pp. 6174. http://doi.org/10.1007/978-3-658-17780-5_4.CrossRefGoogle Scholar
Lachmayer, R. and Lippert, R.B. (2020), Entwicklungsmethodik für die Additive Fertigung, Springer Berlin Heidelberg, Berlin, Heidelberg. http://doi.org/10.1007/978-3-662-59789-7.CrossRefGoogle Scholar
Leino, M., Pekkarinen, J. and Soukka, R. (2016), “The Role of Laser Additive Manufacturing Methods of Metals in Repair, Refurbishment and Remanufacturing – Enabling Circular Economy”, in Physics Procedia, Vol. 83, pp. 752760. http://doi.org/10.1016/j.phpro.2016.08.077.CrossRefGoogle Scholar
Lu, Z., Wang, Z., Masri, S.F. and Lu, X. (2017), “Particle impact dampers: Past, present, and future”, Structural Control and Health Monitoring, Vol. 25 No. 1, e2058. http://doi.org/10.1002/stc.2058.CrossRefGoogle Scholar
Panossian, H.V. (1992), “Structural Damping Enhancement Via Non-Obstructive Particle Damping Technique”, Journal of Vibration and Acoustics, Vol. 114 No. 1, pp. 101105. http://doi.org/10.1115/1.2930221.CrossRefGoogle Scholar
Papalou, A. and Masri, S.F. (1996), “Performance of Particle Dampers Under Random Excitation”, Journal of Sound and Vibration, Vol. 118 No. 4, pp. 614621. http://doi.org/10.1115/1.2888343.Google Scholar
Scott-Emuakpor, O., George, T., Runyon, B., Holycross, C., Langley, B., Sheridan, L., O'Hara, R., Johnson, P. and Beck, J. (2018), “Investigating Damping Performance of Laser Powder Bed Fused Components With Unique Internal Structures”, in Volume 7C: Structures and Dynamics, 11.06.2018, Oslo, Norway, ASME, V07CT35A020. http://doi.org/10.1115/GT2018-75977.CrossRefGoogle Scholar
Vogel, F.A., Berger, S., Özkaya, E. and Biermann, D. (2019), “Vibration Suppression in Turning TiAl6V4 Using Additively Manufactured Tool Holders with Specially Structured, Particle Filled Hollow Elements”, Procedia Manufacturing, Vol. 40, pp. 3237. http://doi.org/10.1016/j.promfg.2020.02.007.CrossRefGoogle Scholar
Wasono, R.S., Wahab, D. and Azman, A. (2019), “Additive Manufacturing for Repair and Restoration in Remanufacturing: An Overview from Object Design and Systems Perspectives”, Processes, Vol. 7 No. 11, p. 802. http://doi.org/10.3390/pr7110802.Google Scholar
Wilson, J.M., Piya, C., Shin, Y.C., Zhao, F. and Ramani, K. (2014), “Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis”, Journal of Cleaner Production, Vol. 80, pp. 170178. http://doi.org/10.1016/j.jclepro.2014.05.084.CrossRefGoogle Scholar
Wohlers, T.T. (2018), Wohlers Report: 3d printing and additive manufacturing state of the industry, Wohlers Associates, Fort Collins.Google Scholar
Xiao, W., Li, J., Wang, S. and Fang, X. (2016), “Study on vibration suppression based on particle damping in centrifugal field of gear transmission”, Journal of Sound and Vibration, Vol. 366, pp. 6280. http://doi.org/10.1016/j.jsv.2015.12.014.CrossRefGoogle Scholar
Yeo, N., Pepin, H. and Yang, S.S. (2017), “Revolutionizing Technology Adoption for the Remanufacturing Industry”, in Procedia CIRP, Vol. 61, pp. 1721. http://doi.org/10.1016/j.procir.2016.11.262.CrossRefGoogle Scholar
Zghair, Y.A. (2019), “Additive Repair Design Process for Aluminium Components”, Dissertation, Institut für Produktentwicklung (IPeG), Leibniz Universität Hannover, Hannover, 2019.Google Scholar
Zghair, Y.A. and Leuteritz, G. (2017), “Additive Repair von Multimaterialsystemen im Selektiven Laserstrahlschmelzen”, in Lachmayer, R., Lippert, R. (eds) Additive Manufacturing Quantifiziert. Springer Vieweg, Berlin, Heidelberg, pp. 195215. http://doi.org/10.1007/978-3-662-54113-5_13.CrossRefGoogle Scholar