Published online by Cambridge University Press: 27 July 2021
In the event of damage to additively manufactured components whose shape cannot be produced by machining, an additive repair can potentially be not only ecologically but also ecologically more favorable than the production of a new component. In addition, a number of hurdles that otherwise often impede the use of additive repair, e.g. the availability of the material of the damaged component for the additive process, are eliminated. As far as the authors are aware, this publication is the first to present a process for the additive refurbishment of additively manufactured components using the example of a wheel carrier. In this context, the possibility of increasing the fatigue strength of a structural component in refurbishment is discussed for the first time. To increase the fatigue strength of the wheel carrier, the chosen approach is to integrate the effect of particle damping into the component. Particularly in the case of components subjected to bending stresses, the effect of particle damping can be integrated into the component's interior without having to accept a significant loss of strength.