Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T03:46:34.949Z Has data issue: false hasContentIssue false

RARE EVENT SIMULATION

Published online by Cambridge University Press:  12 December 2005

Agnès Lagnoux
Affiliation:
Laboratoire de Statistique et Probabilités, Université Paul Sabatier, 31062 Toulouse Cedex 4, France, E-mail: lagnoux@cict.fr

Abstract

This article deals with estimations of probabilities of rare events using fast simulation based on the splitting method. In this technique, the sample paths are split into multiple copies at various stages in the simulation. Our aim is to optimize the algorithm and to obtain a precise confidence interval of the estimator using branching processes. The numerical results presented suggest that the method is reasonably efficient.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aldous, D. (1989). Probability approximations via the Poisson clumping heuristic. Applied Mathematical Sciences. Vol. 77. New York: Springer-Verlag.CrossRef
Athreya, K.B. & Ney, P.E. (1972). Branching processes. Die Grundlehren der mathematischen Wissenschaften Band 196. New York: Springer-Verlag.CrossRef
Cerou, F., Del Moral, P., Legland, F., & Lezaud, P. (2002). Genetic genealogical models in rare event analysis. Preprint. Available from http://www.lsp.ups-tlse.fr/delmoral/preprints.html.
Cosnard, M. & Demongeot, J. (1984). Théorèmes de point fixe et processus de Galton–Watson. Annales des sciences mathématiques du Québec 8(1): 521.Google Scholar
Diaconis, P. & Holmes, S. (1995). Three examples of Monte-Carlo Markov chains: At the interface between statistical computing, computer science, and statistical mechanics. In D. Aldous, P. Diaconis, J. Spencer, & J.M. Steele (eds.), Discrete probability and algorithms. IMA Volumes in Mathematics and its Applications, Vol. 72. New York: Springer-Verlag, pp. 4356.
Harris, T.E. (2002). The theory of branching processes. Dover Phoenix Editions. Mineola, NY: Dover.
Jerrum, M. & Sinclair, A. (1996). The Markov chain Monte Carlo method: An approach to approximate counting and integration. In D. Hochbaum (ed.), Approximation algorithms for NP-hard problems. Boston: PWS Publishing, pp. 482520.
Lyons, R. (2002). Probability on trees and networks. Preprint. Available from http://mypage.iu.edu/rdlyons/.
Norris, J.R. (1998). Markov chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press.
Sadowsky, J.S. (1996). On Monte Carlo estimation of large deviations probabilities. Annals of Applied Probability 6(2): 399422.Google Scholar
Villen-Altamirano, J. & Villen-Altamirano, M. (1994). RESTART: A method for accelerating rare event simulations. Amsterdam: North-Holland, pp. 7176.