Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T02:17:22.411Z Has data issue: false hasContentIssue false

X-ray powder diffraction studies of (Bax Sr1− x )2Co2Fe12O22 and (Bax Sr1− x )Co2Fe16O27

Published online by Cambridge University Press:  11 March 2015

W. Wong-Ng*
Affiliation:
Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
G. Liu
Affiliation:
Institutes of Physics, Chinese Academy of Sciences, Beijing 100008, China
Y. Yan
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
K. R. Talley
Affiliation:
Department of Materials Science and Engineering, Boise State University, Boise, Idaho 83725
J. A. Kaduk
Affiliation:
BCPS, Illinois Institute of Technology, Chicago, Illinois 60616
*
a) Author to whom correspondence should be addressed. Electronic mail: winnie.wong-ng@nist.gov

Abstract

X-ray structural characterization and X-ray reference powder patterns have been determined for two series of iron- and cobalt-containing layered compounds (Bax Sr1− x )2Co2Fe12O22 (x = 0.2, 0.4, 0.6, 0.8) and (Bax Sr1− x )Co2Fe16O27 (x = 0.2, 0.4, 0.6, 0.8). The (Bax Sr1− x )2Co2Fe12O22 series of compounds crystallized in the space group R $\bar 3$ m (No. 166), with Z = 3. The structure is essentially that of the Y-type hexagonal ferrite, BaM 2+Fe6 3+O11. The lattice parameters range from a = 5.859 15(8) to 5.843 72(8) Å, and c = 43.4975(9) to 43.3516(9) Å for x = 0.2 to 0.8, respectively. The (Bax Sr1− x )Co2Fe16O27 series (W-type hexagonal ferrite) crystallized in the space group P63/mmc (No. 194) and Z = 2. The lattice parameters range from a = 5.902 05(12) to 5.8979(2) Å and c = 32.9002(10) to 32.8110(13) Å for x = 0.2 to 0.8. Results of measurements of the Seebeck coefficient and resistivity of these two sets of samples indicated that they are insulators. Powder X-ray diffraction patterns of these two series of compounds have been submitted to be included in the Powder Diffraction File.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bashkirov, L. A., Dudchik, G. P., But`ko, T. A., Kris`ko, L. V., Kunitskii, L. I., Petrov, G. S., Shershavina, A. A., Shichkova, T. A., and Fedorova, G. Y. (2001). “Ba–Sr and Ni–Co solid-state interdiffusion in the hexagonal -ferrites Ba2M2Fe12O22 and Sr2M2Fe126O22 (M = Ni2+, Co2+),” Inorg. Mater. (Engl. Transl.) 37, 737743.CrossRefGoogle Scholar
Braun, P. B. (1956). “The crystal structures of a new group of ferromagnetic compounds,” Philips Res. Rep. 12, 491.Google Scholar
Brese, N. E. and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B 47, 192197.Google Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database,” Acta Crystallogr. B 41, 244247.Google Scholar
Collomb, A., Wolfers, P., and Obradors, X. (1986a). “Neutron diffraction studies of some hexagonal ferrites: BaFe12O19, BaMg2-W and BaCo2-W,” J. Magn. Magn. Mater. 62, 67.Google Scholar
Collomb, A., LambertAndron, B., Boucherle, J., and Samaras, D. (1986b). “Crystal structure and cobalt location in the W-type hexagonal ferrite (Ba)Co2-W,” Phys. Status Solidi A 96, 385395.Google Scholar
Collomb, A., Abdelkader, O., Wolfers, P., Guitel, J. C., and Samaras, D. (1986c). “Crystal structure and magnesium location in the W-type hexagonal ferrite: [Ba]Mg2-W,” J. Magn. Magn. Mater. 58, 247253.Google Scholar
Collomb, A., Hadj Farhat, M. A., and Joubert, J. C. (1989a). “Cobalt location in the Y-type hexagonal ferrite: BaCoFe6O11 ,” Mat. Res. Bull. 24, 453458.Google Scholar
Collomb, A., Muller, J., Guitel, J. C., and Desvignes, J. M. (1989b). “Crystal structure and zinc location in the BaZnFe6O11 Y-type hexagonal ferrite,” J. Magn. Magn. Mater. 78, 7784.Google Scholar
Grebille, D., Lambert, S., Bourée, F., and Petricek, V. (2004). “Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides,” J. Appl. Crystallogr. 37, 823831.Google Scholar
Howard, C. J. (1982). “The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians,” J. Appl. Crystallogr. 15 (6), 615620.Google Scholar
Hu, Y. F., Si, W. D., Sutter, E., and Li, Q. (2005). “ In-situ growth of c-axis- oriented Ca3Co4O9 thin films on Si(100),” Appl. Phys. Lett. 86, 082103.Google Scholar
Larson, A. C. and von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Los Alamos, USA: Los Alamos National Laboratory Report LAUR 86748.Google Scholar
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., and Raveau, B. (2000). “Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9 ,” Phys. Rev. B 62, 166175.Google Scholar
Mikami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H., and Lippmaa, M. (2002). “Rapid synthesis and characterization of (Ca1− x Ba x )3Co4O9 thin films using combinatorial methods,” Appl. Surf. Sci. 197, 442447.Google Scholar
Mikami, M. and Funahashi, R. (2005). “The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6 compounds,” J. Solid State Chem. 178, 16701674.CrossRefGoogle Scholar
Mikami, M., Funahashi, R., Yoshimura, M., Mori, Y., and Sasaki, T. (2003). “High-temperature thermoelectric properties of single-crystal Ca3Co2O6 ,” J. Appl. Phys. 94(10), 65796582.Google Scholar
Naiden, E. P., Maltsev, V. I., and Ryabtsev, G. I. (1990). “Magnetic structure and spin-orientational transitions of hexaferrites of the BaCo2− x Zn x Fe16O27 system,” Phys. Status Solidi A 120, 209.Google Scholar
Nolas, G. S., Sharp, J., and Goldsmid, H. J. (2001). Thermoelectric: Basic Principles and New Materials Developments (Springer, New York).CrossRefGoogle Scholar
Powder Diffraction File (PDF) (2015), produced by International Centre for Diffraction Data, 12 Campus Blvd., Newtown Squares, PA. 19073-3273, USA.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides,” Acta Crystallogr. A 32, 751767.Google Scholar
Shin, H. S. and Kwon, S.-J. (1993). “X-ray powder diffraction patterns of two Y-type hexagonal ferrites,” Powder Diffr. 8, 98101.Google Scholar
Sugimoto, M. (1982). Ferromagnetic Materials (North-Holland Publ. Co., Amsterdam), Vol. 3, p. 303.Google Scholar
Terasaki, I., Sasago, Y., and Uchinokura, K. (1997). “Large thermoelectric power in NaCo2O4 single crystals,” Phys. Rev. B 56, 1268512687.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 ,” J. Appl. Crystallogr. 20, 7983.Google Scholar
Townes, W. D. and Fang, J. H. (1970). “Refinement of the crystal structure of Ba2Zn2Fe12O22 ,” Z. Kristallogr. 131, 196205.Google Scholar
Vinnik, M. A. (1965). “Phase relationships in the BaO–CoO–Fe2O3 system,” Russ. J. Inorg. Chem. 10(9), 1164.Google Scholar
Vinnik, M. A., Agranovskaya, A. I., and Erastova, A. P. (1966). “Strontium-, lead-, and barium-based hexaferrites,” Inorg. Mater. (Engl. Transl.) 2, 1383.Google Scholar
Wang, S., Venimadhav, A., Guo, S., Chen, K., Li, Q., Soukiassian, A., Schlom, D. G., Pan, X. Q., Wong-Ng, W., Vaudin, M. D., Cahill, D. G., and Xi, X. X. (2009). “Structural and thermoelectric properties of Bi2Sr2Co2Oy thin films on LaAlO3 (100) and fused silica substrates,” Appl. Phys. Lett. 94, 022110.Google Scholar
Wong-Ng, W., Hu, Y. F., Vaudin, M. D., He, B., Otani, M., Lowhorn, N. D., and Li, Q. (2007). “Texture analysis of a Ca3Co4O9 thermoelectric film on Si (100) substrate,” J. Appl. Phys. 102(3), 33520.Google Scholar
Wong-Ng, W., Liu, G., Martin, J., Thomas, E., Lowhorn, N., and Otani, M. (2010). “Phase compatibility of the thermoelectric compounds in the Sr–Ca–Co–O system,” J. Appl. Phys. 107, 033508.CrossRefGoogle Scholar
Wong-Ng, W., Luo, T., Tang, M., Xie, M., Kaduk, J. A., Huang, Q., Yang, Y., Tang, M., and Tritt, T. (2011). “Crystal chemistry and thermoelectric properties of compounds in the Ca-Co-Zn-O system,” J. Solid State Chem. 184(8), 2159.Google Scholar
Wong-Ng, W., Laws, W., and Yan, Y. G. (2013). “Phase diagram and crystal chemistry of the La–Ca–Co–O system,” Solid State Sci. 17, 107110.Google Scholar
Wong-Ng, W., Laws, W., Talley, K. R., Huang, Q., Yan, J., and Kaduk, J. A. (2014). “Phase equilibria and crystal chemistry of the CaO–½Nd2O3–CoOz system at 885 °C in air,” J. Solid State Chem. 215, 128134.Google Scholar
Yan, Y. G., Martin, J., Wong-Ng, W., Green, M., and Tang, X. F. (2013). “A temperature dependent screening tool for high throughput thermoelectric characterization of combinatorial films,” Sci. Rev. Instrum. 84, 115110.CrossRefGoogle ScholarPubMed