Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T14:04:26.132Z Has data issue: false hasContentIssue false

X-ray powder diffraction data for monoclinic metazachlor, 2-chloro-N-(pyrazol-1-ylmethyl) acetyl-2′, 6′-xylidide

Published online by Cambridge University Press:  01 March 2012

J. N. Dunlevey
Affiliation:
School of Earth Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa

Abstract

X-ray powder diffraction data and unit cells parameters for a monoclinic variety of the popular herbicide 2-chloro-N-(pyrazol-1-ylmethyl) acetyl-2′, 6′-xylidide, commonly known as metazachlor, butisan, and butichlor, is presented [a=7.306(3) Å, b=17.824(9) Å, c=10.728(3) Å, β=98.46(4)°, space group P21/c, cell volume=1381.82 Å3, Z=4]. The four strongest peaks (Irel>25) at 8.87, 7.19, 4.57, and 4.45 Å are quite distinctive, thus X-ray powder diffraction provides a quick, simple, and definitive method of identifying this form of material from other commercially available herbicide products.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beulke, S. and Malkomes, H.-P. (2001). “Effects of the herbicides metazachlor and dinoterb on the soil microflora and the degradation and sorption of metazachlor under different environmental conditions,” Biol. Fertil. SoilsBFSOEE 33, 467471.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr.JACGAR10.1107/S0021889804014876 37, 724731.CrossRefGoogle Scholar
Griesser, U. J., Weigand, D., Rollinger, J. M., Haddow, M., and Gstrein, E. (2004). “The crystal polymorphs of metazachlor, identification and thermodynamic stability,” J. Therm Anal. Calorim.JTACF7 77, 511512.CrossRefGoogle Scholar
Jetti, R., Haddow, M., Erk, P., Kahlenberg, V., Worst, K., Weogland, D., and Griesser, U. J. (2004). “Crystal Polymorphs of Metazachlor: Isolation, Morphology and Crystal Structure Analysis,” PhandTA 8—8th International Conference on Pharmacy and Applied Physical Chemistry, Eurostar-Science, Ascona, Switzerland.Google Scholar
Kohlbeck, F. and Hörl, E. M. (1978). “Trial and error indexing program for powder patterns of monoclinic substances,” J. Appl. Crystallogr.JACGAR10.1107/S0021889878012716 11, 6061.CrossRefGoogle Scholar
Rouchaud, J. M. (1992). “Soil degradation of metazachlor in agronomic and vegetable crop fields,” Weed Sci.WEESA6 40, 149154.CrossRefGoogle Scholar
Shirley, R. (2000). The CRYSFIRE System for Automatic Powder Indexing: User’s Manual (Lattice, Guildford, United Kingdom).Google Scholar
Tomlin, C. D. S. (1997). The Pesticide Manual, 11th ed. (British Crop Protection Council, Binfield, United Kingdom).Google Scholar
Tomlin, C. D. S. (2003). The Pesticide Manual, 13th ed. (British Crop Protection Council, Binfield, United Kingdom).Google Scholar
Werner, P.-E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr.JACGAR10.1107/S0021889885010512 18, 367370.CrossRefGoogle Scholar
Whitehead, R. (2005). The UK Pesticide Guide (British Crop Protection Council, Binfield, United Kingdom).Google Scholar